Menu
×
West Ashley Library
Closed (2024 - Christmas)
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed (2024 - Christmas)
Phone: (843) 805-6888
Village Library
Closed (2024 - Christmas)
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed (2024 - Christmas)
Phone: (843) 889-3300
Otranto Road Library
Closed (2024 - Christmas)
Phone: (843) 572-4094
Mt. Pleasant Library
Closed (2024 - Christmas)
Phone: (843) 849-6161
McClellanville Library
Closed (2024 - Christmas)
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed (2024 - Christmas)
Phone: (843) 744-2489
John's Island Library
Closed (2024 - Christmas)
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed (2024 - Christmas)
Phone: (843) 766-2546
Folly Beach Library
Closed (2024 - Christmas)
Phone: (843) 588-2001
Edisto Island Library
Closed (2024 - Christmas)
Phone: (843) 869-2355
Dorchester Road Library
Closed (2024 - Christmas)
Phone: (843) 552-6466
John L. Dart Library
Closed (2024 - Christmas)
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed (2024 - Christmas)
Phone: (843) 795-6679
Main Library
Closed (2024 - Christmas)
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed (2024 - Christmas)
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed (2024 - Christmas)
Phone: (843) 883-3914
Mobile Library
Closed (2024 - Christmas)
Phone: (843) 805-6909
Today's Hours
West Ashley Library
Closed (2024 - Christmas)
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed (2024 - Christmas)
Phone: (843) 805-6888
Village Library
Closed (2024 - Christmas)
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed (2024 - Christmas)
Phone: (843) 889-3300
Otranto Road Library
Closed (2024 - Christmas)
Phone: (843) 572-4094
Mt. Pleasant Library
Closed (2024 - Christmas)
Phone: (843) 849-6161
McClellanville Library
Closed (2024 - Christmas)
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed (2024 - Christmas)
Phone: (843) 744-2489
John's Island Library
Closed (2024 - Christmas)
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed (2024 - Christmas)
Phone: (843) 766-2546
Folly Beach Library
Closed (2024 - Christmas)
Phone: (843) 588-2001
Edisto Island Library
Closed (2024 - Christmas)
Phone: (843) 869-2355
Dorchester Road Library
Closed (2024 - Christmas)
Phone: (843) 552-6466
John L. Dart Library
Closed (2024 - Christmas)
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed (2024 - Christmas)
Phone: (843) 795-6679
Main Library
Closed (2024 - Christmas)
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed (2024 - Christmas)
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed (2024 - Christmas)
Phone: (843) 883-3914
Mobile Library
Closed (2024 - Christmas)
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Deconstructing the Gestalt: New concepts and tests of homology, as exemplified by a re-conceptualization of "microstomy" in squamates.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Strong CRC;Strong CRC; Scherz MD; Scherz MD; Caldwell MW; Caldwell MW; Caldwell MW
- Source:
Anatomical record (Hoboken, N.J. : 2007) [Anat Rec (Hoboken)] 2021 Oct; Vol. 304 (10), pp. 2303-2351. Date of Electronic Publication: 2021 Apr 19.- Publication Type:
Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.- Language:
English - Source:
- Additional Information
- Source: Publisher: John Wiley & Sons Country of Publication: United States NLM ID: 101292775 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1932-8494 (Electronic) Linking ISSN: 19328486 NLM ISO Abbreviation: Anat Rec (Hoboken) Subsets: MEDLINE
- Publication Information: Original Publication: Hoboken, NJ : John Wiley & Sons, 2007-
- Subject Terms:
- Abstract: Snakes-a subset of lizards-have traditionally been divided into two major groups based on feeding mechanics: "macrostomy," involving the ingestion of proportionally large prey items; and "microstomy," the lack of this ability. "Microstomy"-considered present in scolecophidian and early-diverging alethinophidian snakes-is generally viewed as a symplesiomorphy shared with non-snake lizards. However, this perspective of "microstomy" as plesiomorphic and morphologically homogenous fails to recognize the complexity of this condition and its evolution across "microstomatan" squamates. To challenge this problematic paradigm, we formalize a new framework for conceptualizing and testing the homology of overall character complexes, or "morphotypes," which underlies our re-assessment of "microstomy." Using micro-computed tomography (micro-CT) scans, we analyze the morphology of the jaws and suspensorium across purported "microstomatan" squamates (scolecophidians, early-diverging alethinophidians, and non-snake lizards) and demonstrate that key components of the jaw complex are not homologous at the level of primary character state identity across these taxa. Therefore, rather than treating "microstomy" as a uniform condition, we instead propose that non-snake lizards, early-diverging alethinophidians, anomalepidids, leptotyphlopids, and typhlopoids each exhibit a unique and nonhomologous jaw morphotype: "minimal-kinesis microstomy," "snout-shifting," "axle-brace maxillary raking," "mandibular raking," and "single-axle maxillary raking," respectively. The lack of synapomorphy among scolecophidians is inconsistent with the notion of scolecophidians representing an ancestral snake condition, and instead reflects a hypothesis of the independent evolution of fossoriality, miniaturization, and "microstomy" in each scolecophidian lineage. We ultimately emphasize that a rigorous approach to comparative anatomy is necessary in constructing evolutionary hypotheses that accurately reflect biological reality.
(© 2021 American Association for Anatomy.) - References: Al-Mohammadi, A. G. A., Khannoon, E. R., & Evans, S. E. (2020). The development of the osteocranium in the snake Psammophis sibilans (Serpentes: Lamprophiidae). Journal of Anatomy, 236, 117-131.
Apesteguía, S., & Zaher, H. (2006). A cretaceous terrestrial snake with robust hindlimbs and a sacrum. Nature, 440, 1037-1040.
Asplen, M. K., Whitfield, J. B., de Boer, J. G., & Heimpel, G. E. (2009). Ancestral state reconstruction analysis of hymenopteran sex determination mechanisms. Journal of Evolutionary Biology, 22, 1762-1769.
Bellairs, A. D., & Underwood, G. (1951). The origin of snakes. Biological Reviews, 26, 193-237.
Betancur-R, R., Ortí, G., & Pyron, R. A. (2015). Fossil-based comparative analyses reveal ancient marine ancestry erased by extinction in ray-finned fishes. Ecology Letters, 18, 441-450.
Brock, G. T. (1932). The skull of Leptotyphlops (Glauconia nigricans). Anatomischer Anzeiger, 73, 199-204.
Brower, A. V. Z., & Schawaroch, V. (1996). Three steps of homology assessment. Cladistics, 12, 265-272.
Burbrink, F. T., Grazziotin, F. G., Pyron, R. A., Cundall, D., Donnellan, S., Irish, F., … Zaher, H. (2020). Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Systematic Biology, 69, 502-520.
Caldwell, M. W. (2000). On the phylogenetic relationships of Pachyrhachis within snakes: A response to Zaher (1998). Journal of Vertebrate Paleontology, 20, 187-190.
Caldwell, M. W. (2007). The role, impact, and importance of fossils: Snake phylogeny, origins, and evolution (1869-2006). In J. Anderson & H.-D. Sues (Eds.), Major transitions in vertebrate evolution (pp. 253-302). Bloomington, Indiana: Indiana University Press.
Caldwell, M. W. (2019). The origin of snakes: Morphology and the fossil record. Boca Raton, FL: Taylor & Francis.
Campbell, J. A., Smith, E. N., & Hall, A. S. (2018). Caudals and calyces: The curious case of a consumed Chiapan colubroid. Journal of Herpetology, 52, 459-472.
Chretien, J., Wang-Claypool, C. Y., Glaw, F., & Scherz, M. D. (2019). The bizarre skull of Xenotyphlops sheds light on synapomorphies of Typhlopoidea. Journal of Anatomy, 234, 637-655.
Conrad, J. L. (2008). Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bulletin of the American Museum of Natural History, 310, 1-182.
Cundall, D. (1995). Feeding behaviour in Cylindrophis and its bearing on the evolution of alethinophidian snakes. Journal of Zoology, 237, 353-376.
Cundall, D., & Irish, F. (2008). The snake skull. In C. Gans, A. S. Gaunt, & K. Adler (Eds.), Biology of the reptilia: Morphology H, the skull of lepidosauria (pp. 349-692). Ithaca, New York: Society for the Study of Amphibian and Reptiles.
Cundall, D., & Rossman, D. A. (1993). Cephalic anatomy of the rare Indonesian snake Anomochilus weberi. Zoological Journal of the Linnean Society, 109, 235-273.
Da Silva, F. O., Fabre, A.-C., Savriama, Y., Ollonen, J., Mahlow, K., Herrel, A., … Di-Poï, N. (2018). The ecological origins of snakes as revealed by skull evolution. Nature Communications, 9, 376.
de Pinna, M. G. G. (1991). Concepts and tests of homology in the cladistic paradigm. Cladistics, 7, 367-394.
Dragonfly 4.0. 2019. http://www.theobjects.com/dragonfly.
Evans, H. E. (1955). The osteology of a worm snake, Typhlops jamaicensis (Shaw). The Anatomical Record, 122, 381-396.
Evans, S. E. (2008). The skull of lizards and tuatara. In C. Gans, A. S. Gaunt, & K. Adler (Eds.), Biology of the reptilia. The skull of lepidosauria (Vol. 20, pp. 1-347). Ithaca: Society for the Study of Amphibians and Reptiles.
Figueroa, A., McKelvy, A. D., Grismer, L. L., Bell, C. D., & Lailvaux, S. P. (2016). A species-level phylogeny of extant snakes with description of a new colubrid subfamily and genus. PLoS One, 11, e0161070.
Finarelli, J. A., & Flynn, J. J. (2006). Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): The effects of incorporating data from the fossil record. Systematic Biology, 55, 301-313.
Finarelli, J. A., & Goswami, A. (2013). Potential pitfalls of reconstructing deep time evolutionary history with only extant data, a case study using the Canidae (Mammalia, Carnivora). Evolution, 67, 3678-3685.
Frazzetta, T. H. (1962). A functional consideration of cranial kinesis in lizards. Journal of Morphology, 111, 287-319.
Fröbisch, N. B., & Schoch, R. R. (2009). Testing the impact of miniaturization on phylogeny: Paleozoic dissorophoid amphibians. Systematic Biology, 58, 312-327.
Gans, C., & Montero, R. (2008). An atlas of amphisbaenian skull anatomy. In C. Gans, A. S. Gaunt, & K. Adler (Eds.), Biology of the Reptilia. Morphology I. The skull and appendicular locomotor apparatus of lepidosauria (Vol. 21, pp. 621-738). Ithaca, New York: Society for the Study of Amphibians and Reptiles.
Garberoglio, F. F., Apesteguía, S., Simões, T. R., Palci, A., Gómez, R. O., Nydam, R. L., … Caldwell, M. W. (2019). New skulls and skeletons of the cretaceous legged snake Najash, and the evolution of the modern snake body plan. Science Advances, 5, eaax5833.
Garberoglio, F. F., Gómez, R. O., Apesteguía, S., Caldwell, M. W., Sánchez, M. L., & Veiga, G. (2019). A new specimen with skull and vertebrae of Najash rionegrina (Lepidosauria: Ophidia) from the early late cretaceous of Patagonia. Journal of Systematic Palaeontology, 17, 1533-1550.
Gauthier, J. A., Kearney, M., Maisano, J. A., Rieppel, O., & Behlke, A. D. B. (2012). Assembling the squamate tree of life: Perspectives from the phenotype and the fossil record. Bulletin of the Peabody Museum of Natural History, 53, 3-308.
Greer, A. E. (1985). The relationships of the lizard genera Anelytropsis and Dibamus. Journal of Herpetology, 19, 116-156.
Griffith, O. W., Blackburn, D. G., Brandley, M. C., van Dyke, J. U., Whittington, C. M., & Thompson, M. B. (2015). Ancestral state reconstructions require biological evidence to test evolutionary hypotheses: A case study examining the evolution of reproductive mode in squamate reptiles. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 324B, 493-503.
Haas, G. (1930). Über das Kopfskelett und die Kaumuskulatur der Typhlopiden und Glauconiiden. Zoologische Jahrbücher Abteilung für Anatomie, 52, 1-94.
Haas, G. (1964). Anatomical observations on the head of Liotyphlops albirostris (Typhlopidae, Ophidia). Acta Zoologica, 1964, 1-62.
Haas, G. (1968). Anatomical observations on the head of Anomalepis aspinosus (Typhlopidae, Ophidia). Acta Zoologica, 48, 63-139.
Hanken, J. (1984). Miniaturization and its effects on cranial morphology in plethodontid salamanders, genus Thorius (Amphibia: Plethodontidae). I. Osteological variation. Biological Journal of the Linnean Society, 23, 55-75.
Hanken, J., & Wake, D. B. (1993). Miniaturization of body size: Organismal consequences and evolutionary significance. Annual Review of Ecology and Systematics, 24, 501-519.
Harrington, S. M., & Reeder, T. W. (2017). Phylogenetic inference and divergence dating of snakes using molecules, morphology and fossils: New insights into convergent evolution of feeding morphology and limb reduction. Biological Journal of the Linnean Society, 121, 379-394.
Hawkins, J. A., Hughes, C. E., & Scotland, R. W. (1997). Primary homology assessment, characters and character states. Cladistics, 13, 275-283.
Hawlitschek, O., Scherz, M. D., Webster, K. C., Ineich, I., & Glaw, F. (2021). Morphological, osteological, and genetic data support a new species of Madatyphlops (Serpentes: Typhlopidae) endemic to Mayotte Island, Comoros archipelago. The Anatomical Record, 2021, 1-15.
Hsiang, A. Y., Field, D. J., Webster, T. H., Behlke, A. D. B., Davis, M. B., Racicot, R. A., & Gauthier, J. A. (2015). The origin of snakes: Revealing the ecology, behavior, and evolutionary history of early snakes using genomics, phenomics, and the fossil record. BMC Evolutionary Biology, 15, 87.
Iordansky, N. N. (1997). Jaw apparatus and feeding mechanics of Typhlops (Ophidia: Typhlopidae): A reconsideration. Russian Journal of Herpetology, 4, 120-127.
Kamal, A. M. (1966). On the process of rotation of the quadrate cartilage in Ophidia. Anatomischer Anzeiger, 118, 87-90.
Kearney, M., & Stuart, B. L. (2004). Repeated evolution of limblessness and digging heads in worm lizards revealed by DNA from old bones. Proceedings of the Royal Society of London. Series B, Biological sciences, 271, 1677-1683.
Kley, N. J. (2001). Prey transport mechanisms in blindsnakes and the evolution of unilateral feeding systems in snakes. American Zoologist, 41, 1321-1337.
Kley, N. J. (2006). Morphology of the lower jaw and suspensorium in the Texas blindsnake, Leptotyphlops dulcis (Scolecophidia: Leptotyphlopidae). Journal of Morphology, 267, 494-515.
Kley, N. J., & Brainerd, E. L. (1999). Feeding by mandibular raking in a snake. Nature, 402, 369-370.
Kraus, F. (2017). New species of blindsnakes (Squamata: Gerrhopilidae) from the offshore islands of Papua New Guinea. Zootaxa, 4299, 75-94.
Lee, M. S. Y. (1998). Convergent evolution and character correlation in burrowing reptiles: Towards a resolution of squamate relationships. Biological Journal of the Linnean Society, 65, 369-453.
Lee, M. S. Y., & Caldwell, M. W. (1998). Anatomy and relationships of Pachyrhachis problematicus, a primitive snake with hindlimbs. Philosophical Transactions of the Royal Society, Series B: Biological Sciences, 353, 1521-1552.
Lewis, P. O. (2001). A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology, 50, 913-925.
List, J. C. (1966). Comparative osteology of the snake families typhlopidae and leptotyphlopidae. Illinois Biological Monographs, 36, 1-112.
Mabee, P. M., Balhoff, J. P., Dahdul, W. M., Lapp, H., Mungall, C. J., & Vision, T. J. (2020). A logical model of homology for comparative biology. Systematic Biology, 69, 345-362.
Maddin, H. C., Olori, J. C., & Anderson, J. S. (2011). A redescription of Carrolla craddocki (Lepospondyli: Brachystelechidae) based on high-resolution CT, and the impacts of miniaturization and fossoriality on morphology. Journal of Morphology, 272, 722-743.
Maddison, W. P., Maddison, D. R. (2006). StochChar: a package of Mesquite modules for stochastic models of character evolution. Version 1.1.
Maddison, W. P., Maddison, D. R. (2019). Mesquite: a modular system for evolutionary analysis. Version 3.61. http://mesquiteproject.org.
Mahendra, B. C. (1936). Contributions to the osteology of the Ophidia. I. the endoskeleton of the so-called 'blind-snake', Typhlops braminus Daud. Proceedings of the Indian Academy of Sciences, 3, 128-142.
Martins, A., Koch, C., Pinto, R., Folly, M., Fouquet, A., & Passos, P. (2019). From the inside out: Discovery of a new genus of threadsnakes based on anatomical and molecular data, with discussion of the leptotyphlopid hemipenial morphology. Journal of Zoological Systematics and Evolutionary Research, 57, 840-863.
McDowell, S. B., & Bogert, C. M. (1954). The systematic position of Lanthanotus and the affinities of the anguimorphan lizards. Bulletin of the American Museum of Natural History, 105, 1-142.
McNamara, K. J. (1986). A guide to the nomenclature of heterochrony. Journal of Paleontology, 60, 4-13.
Miralles, A., Marin, J., Markus, D., Herrel, A., Hedges, S. B., & Vidal, N. (2018). Molecular evidence for the paraphyly of Scolecophidia and its evolutionary implications. Journal of Evolutionary Biology, 31, 1782-1793.
Mongiardino Koch, N., & Parry, L. A. (2020). Death is on our side: Paleontological data drastically modify phylogenetic hypotheses. Systematic Biology, 69, 1052-1067.
Nagy, Z. T., Marion, A. B., Glaw, F., Miralles, A., Nopper, J., Vences, M., & Hedges, S. B. (2015). Molecular systematics and undescribed diversity of Madagascan scolecophidian snakes (Squamata: Serpentes). Zootaxa, 4040, 31-47.
Ollonen, J., Silva, F. O. D., Mahlow, K., & Di-Poï, N. (2018). Skull development, ossification pattern, and adult shape in the emerging lizard model organism Pogona vitticeps: A comparative analysis with other squamates. Frontiers in Physiology, 9, 278.
Olori, J. C., & Bell, C. J. (2012). Comparative skull morphology of uropeltid snakes (Alethinophidia: Uropeltidae) with special reference to disarticulated elements and variation. PLoS One, 7, e32450.
Palci, A., Caldwell, M. W., Hutchinson, M. N., Konishi, T., & Lee, M. S. Y. (2020). The morphological diversity of the quadrate bone in squamate reptiles as revealed by high-resolution computed tomography and geometric morphometrics. Journal of Anatomy, 236, 210-227.
Palci, A., Lee, M. S. Y., & Hutchinson, M. N. (2016). Patterns of postnatal ontogeny of the skull and lower jaw of snakes as revealed by micro-CT scan data and three-dimensional geometric morphometrics. Journal of Anatomy, 229, 723-754.
Patterson, C. (1982). Morphological characters and homology. In K. A. Joysey & A. E. Friday (Eds.), Problems of phylogenetic reconstruction (pp. 21-74). London and New York: Academic Press.
Patterson, C. (1988). Homology in classical and molecular biology. Molecular Biology and Evolution, 5, 603-625.
Pinto, R. R., Martins, A. R., Curcio, F., & Ramos, L. O. (2015). Osteology and cartilaginous elements of Trilepida salgueiroi (Amaral, 1954) (Scolecophidia: Leptotyphlopidae). The Anatomical Record, 298, 1722-1747.
Polachowski, K. M., & Werneburg, I. (2013). Late embryos and bony skull development in Bothropoides jararaca (Serpentes, Viperidae). Zoology, 116, 36-63.
Puttick, M. N. (2016). Partially incorrect fossil data augment analyses of discrete trait evolution in living species. Biology Letters, 12, 20160392.
Pyron, R. A., Burbrink, F. T., & Wiens, J. J. (2013). A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13, 93.
Reeder, T. W., Townsend, T. M., Mulcahy, D. G., Noonan, B. P., Wood, P. L., Sites, J. W., & Wiens, J. J. (2015). Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa. PLoS One, 10, e0118199.
Rieppel, O. (1977). Studies on the skull of the Henophidia (Reptilia: Serpentes). Journal of Zoology, 181, 145-173.
Rieppel, O. (1984). The cranial morphology of the fossorial lizard genus Dibamus with a consideration of its phylogenetic relationships. Journal of Zoology, 204, 289-327.
Rieppel, O. (1988). A review of the origin of snakes. In M. K. Hecht, B. Wallace, & G. T. Prance (Eds.), Evolutionary biology (pp. 37-130). Boston, MA: Springer.
Rieppel, O. (1994). Homology, topology, and typology: The history of modern debates. In B. K. Hall (Ed.), Homology: The hierarchical basis of comparative biology (pp. 63-100). San Diego: Academic Press.
Rieppel, O. (2012). “Regressed” macrostomatan snakes. Fieldiana Life and Earth Sciences, 2012, 99-103.
Rieppel, O., & Kearney, M. (2002). Similarity. Biological Journal of the Linnean Society, 75, 59-82.
Rieppel, O., Kley, N. J., & Maisano, J. A. (2009). Morphology of the skull of the white-nosed blindsnake, Liotyphlops albirostris (Scolecophidia: Anomalepididae). Journal of Morphology, 270, 536-557.
Rieppel, O., & Maisano, J. A. (2007). The skull of the rare Malaysian snake Anomochilus leonardi Smith, based on high-resolution X-ray computed tomography. Zoological Journal of the Linnean Society, 149, 671-685.
Rieppel, O., & Zaher, H. (2000). The intramandibular joint in squamates, and the phylogenetic relationships of the fossil snake Pachyrhachis problematicus Haas. Fieldiana Geology, 43, 1-69.
Santos, F. J. M., & Reis, R. E. (2019). Redescription of the blind snake Anomalepis Colombia (Serpentes: Anomalepididae) using high-resolution X-ray computed tomography. Copeia, 107, 239-243.
Scanferla, A. (2016). Postnatal ontogeny and the evolution of macrostomy in snakes. Royal Society Open Science, 3, 160612.
Sereno, P. C. (2007). Logical basis for morphological characters in phylogenetics. Cladistics, 23, 565-587.
Simões, T. R., Caldwell, M. W., Palci, A., & Nydam, R. L. (2017). Giant taxon-character matrices: Quality of character constructions remains critical regardless of size. Cladistics, 33, 198-219.
Simões, T. R., Caldwell, M. W., Tałanda, M., Bernardi, M., Palci, A., Vernygora, O., … Nydam, R. L. (2018). The origin of squamates revealed by a middle Triassic lizard from the Italian Alps. Nature, 557, 706-709.
Strong, C. R. C., Palci, A., & Caldwell, M. W. (2021). Insights into skull evolution in fossorial snakes, as revealed by the cranial morphology of Atractaspis irregularis (Serpentes: Colubroidea). Journal of Anatomy, 238, 146-172.
Strong, C. R. C., Simões, T. R., Caldwell, M. W., & Doschak, M. R. (2019). Cranial ontogeny of Thamnophis radix (Serpentes: Colubroidea) with a re-evaluation of current paradigms of snake skull evolution. Royal Society Open Science, 6, 182228.
Struck, T. H. (2007). Data congruence, paedomorphosis and salamanders. Frontiers in Zoology, 4, 22.
Wake, M. H. (1986). The morphology of ldiocranium russeli (Amphibia: Gymnophiona), with comments on miniaturization through heterochrony. Journal of Morphology, 189, 1-16.
Werneburg, I., Polachowski, K. M., & Hutchinson, M. N. (2015). Bony skull development in the Argus monitor (Squamata, Varanidae, Varanus panoptes) with comments on developmental timing and adult anatomy. Zoology, 118, 255-280.
Wiens, J. J., Bonett, R. M., & Chippindale, P. T. (2005). Ontogeny discombobulates phylogeny: Paedomorphosis and higher-level salamander relationships. Systematic Biology, 54, 91-110.
Wiens, J. J., Kuczynski, C. A., Townsend, T. M., Reeder, T. W., Mulcahy, D. G., & Sites, J. W. J. (2010). Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: Molecular data change the placement of fossil taxa. Systematic Biology, 59, 674-688.
Wilkinson, M. (1995). A comparison of two methods of character construction. Cladistics, 11, 297-308.
Zaher, H. (1998). The phylogenetic position of Pachyrhachis within snakes (Squamata, Lepidosauria). Journal of Vertebrate Paleontology, 18, 1-3.
Zaher, H., & Rieppel, O. (1999). The phylogenetic relationships of Pachyrhachis problematicus, and the evolution of limblessness in snakes (Lepidosauria, Squamata). Comptes Rendus de l'Académie des Sciences - Series IIA - Earth and Planetary Science, 329, 831-837.
Zaher, H., & Rieppel, O. (2002). On the phylogenetic relationships of the cretaceous snakes with legs, with special reference to Pachyrhachis problematicus (Squamata, Serpentes). Journal of Vertebrate Paleontology, 22, 104-109.
Zheng, Y., & Wiens, J. J. (2016). Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Molecular Phylogenetics and Evolution, 94, 537-547. - Grant Information: DBI-1702421 National Science Foundation; DBI-1701932 National Science Foundation; DBI-1701713 National Science Foundation; DBI-1701714 National Science Foundation; EF-0334961 National Science Foundation; IIS-0208675 National Science Foundation; IIS-9874781 National Science Foundation; DEB-0132227 National Science Foundation; 1541959 National Science Foundation; (#23458) Natural Sciences and Engineering Research Council of Canada (NSERC)
- Contributed Indexing: Keywords: ancestral state reconstruction; functional morphology; homology; skull anatomy; snake evolution
- Publication Date: Date Created: 20210419 Date Completed: 20220309 Latest Revision: 20220309
- Publication Date: 20221213
- Accession Number: 10.1002/ar.24630
- Accession Number: 33871920
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.