Hydrogen sulfide prevents ethanol-induced ZO-1 CpG promoter hypermethylation-dependent vascular permeability via miR-218/DNMT3a axis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Behera J;Behera J; Kelly KE; Kelly KE; Tyagi N; Tyagi N
  • Source:
    Journal of cellular physiology [J Cell Physiol] 2021 Oct; Vol. 236 (10), pp. 6852-6867. Date of Electronic Publication: 2021 Apr 14.
  • Publication Type:
    Journal Article; Research Support, N.I.H., Extramural
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Wiley-Liss Country of Publication: United States NLM ID: 0050222 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-4652 (Electronic) Linking ISSN: 00219541 NLM ISO Abbreviation: J Cell Physiol Subsets: MEDLINE
    • Publication Information:
      Publication: New York, NY : Wiley-Liss
      Original Publication: Philadelphia, Wistar Institute of Anatomy and Biology.
    • Subject Terms:
    • Abstract:
      Ethanol (ET) causes cerebrovascular dysfunction by altering homocysteine (Hcy) metabolism and by causing oxidative stress. However, there are no strategies to prevent ET-induced epigenetic deregulation of tight junction protein (hyper-methylation) and endothelial cell permeability to date. Hydrogen sulfide (H 2 S) has an antioxidative, antiapoptotic, and anti-inflammatory effect. Here, we investigated the protective role of H 2 S in ET-induced endothelial permeability through epigenetic changes in mouse brain endothelial cells (bEnd3). The bEnd3 cells were exposed to 50 mM ET treatment in the presence or absence of 50 μM NaHS (H 2 S donor). The result demonstrates that ET-induced cellular toxicity increased intracellular Hcy levels, which further intensified mitochondrial dysfunction and energy defects. Using miScript microRNA (miRNA) polymerase chain reaction array-based screening, we identified a particular miRNA, miR-218, as a novel target of ET-induced DNA methyltransferase-3a (DNMT3a) activation. miR-218 influences CpG island methylation of the zonula occludens 1 (ZO-1) promoter in the endothelial cells. We discovered that ET suppressed miR-218 levels and induced endothelial permeability via DNMT3a-mediated ZO-1 hyper-methylation. Treatment with mito-TEMPO (mitochondria-targeted antioxidant), 5'-azacitidine (DNMT inhibitor), or miR-218 overexpression was shown to protect endothelial cells against ET-induced permeability. Also, bEnd3 cells pretreated with NaHS attenuated ET-induced vascular permeability and prevented CpG island methylation at the promoter. In conclusion, our data provide evidence that H 2 S treatment protects vascular integrity from ET-induced stress by mitigating CpG (ZO-1 promoter) DNA hyper-methylation. This finding uncovers a new mechanistic understanding of NaHS/H 2 S, that may have therapeutic potential in preventing or diminishing ET-induced brain vascular permeability and dysfunction induced by alcoholism.
      (© 2021 Wiley Periodicals LLC.)
    • References:
      Alimov, A. , Wang, H. , Liu, M. , Frank, J. A. , Xu, M. , Ou, X. , & Luo, J. (2013). Expression of autophagy and UPR genes in the developing brain during ethanol-sensitive and resistant periods. Metabolic Brain Disease, 28(4), 667-676. https://doi.org/10.1007/s11011-013-9430-2.
      Bailey, S. M. , Patel, V. B. , Young, T. A. , Asayama, K. , & Cunningham, C.  (2001). Chronic ethanol consumption alters the glutathione/glutathione peroxidase-1 system and protein oxidation status in rat liver. Alcoholism, Clinical and Experimental Research, 25(5), 726-733. https://doi.org/10.1111/j.1530-0277.2001.tb02273.x.
      Behera, J. , George, A. K. , Voor, M. J. , Tyagi, S. C. , & Tyagi, N. (2018). Hydrogen sulfide epigenetically mitigates bone loss through OPG/RANKL regulation during hyperhomocysteinemia in mice. Bone, 114, 90-108. https://doi.org/10.1016/j.bone.2018.06.009.
      Behera, J. , Kelly, K. E. , Voor, M. J. , Metreveli, N. , Tyagi, S. C. , & Tyagi, N. (2018). Hydrogen sulfide promotes bone homeostasis by balancing inflammatory cytokine signaling in CBS-deficient mice through an epigenetic mechanism. Scientific Reports, 8(1), 15226. https://doi.org/10.1038/s41598-018-33149-9.
      Behera, J. , Tyagi, S. C. , & Tyagi, N. (2019). Hyperhomocysteinemia induced endothelial progenitor cell dysfunction through hyper-methylation of CBS promoter. Biochemical and Biophysical Research Communications, 510, 135e141-141e141. https://doi.org/10.1016/j.bbrc.2019.01.066.
      Choi, S. W. , Stickel, F. , Baik, H. W. , Kim, Y. I. , Seitz, H. K. , & Mason, J. (1999). Chronic alcohol consumption induces genomic but not p53-specific DNA hypomethylation in rat colon. Journal of Nutrition, 129(11), 1945-1950. https://doi.org/10.1093/jn/129.11.1945.
      Cirio, M. C. , Martel, J. , Mann, M. , Toppings, M. , Bartolomei, M. , Trasler, J. , & Chaillet, J. R. (2008). DNA methyltransferase 1o functions during preimplantation development to preclude a profound levelofepigenetic variation. Developmental Biology, 324, 139-150. https://doi.org/10.1016/j.ydbio.2008.09.015.
      Comporti, M. , Signorini, C. , Leoncini, S. , Gardi, C. , Ciccoli, L. , Giardini, A. , Vecchio, D. , & Arezzini, B. (2010). Ethanol-induced oxidative stress: Basic knowledge. Genes & Nutrition, 5(2), 101-109. https://doi.org/10.1007/s12263-009-0159-9.
      Corsello, T. , Komaravelli, N. , & Casola, A. (2018). Role of hydrogen sulfide in NRF2- and sirtuin-dependent maintenance of cellular redox balance. Antioxidants, 7(10), 129. https://doi.org/10.3390/antiox7100129.
      Cunningham, C. C. , Choleman, W. B. , & Spach, P. I. (1990). The effects of chronic ethanol consumption on hepatic mitochondrial energy metabolism. Alcohol and Alcoholism, 25(2-3), 127-136. https://doi.org/10.1093/oxfordjournals.alcalc.a044987.
      Das, S. K. , Hiran, K. R. , Mukherjee, S. , & Vasudevan, D. M. (2007). Oxidative stress is the primary event: Effects of ethanol consumption in brain. Indian Journal of Clinical Biochemistry, 22(1), 99-104. https://doi.org/10.1007/BF02912890.
      Delgado-Calle, J. , Sanudo, C. , Fernández, A. F. , García-Renedo, R. , Fraga, M. F. , & Riancho, J. A. (2012). Role of DNA methylation in the regulation of the RANKL-OPG system in human bone. Epigenetics, 7(1), 83-91. https://doi.org/10.4161/epi.7.1.18753.
      Deng, X. S. , Bludeau, P. , & Deitrich, R. A. (2004). Formation of ethyl nitrite in vivo after ethanol administration. Alcohol, 34(2-3), 217-223. https://doi.org/10.1016/j.alcohol.2004.09.005.
      Dong, X. , Liu, H. , Chen, F. , Li, D. , & Zhao, Y. (2014). miR-214 Promotes the alcohol-induced oxidative stress via down-regulation of glutathione reductase and cytochrome P450 oxidoreductase in liver cells. Alcoholism: Clinical and Experimental Research, 38(1), 68-77. https://doi.org/10.1111/acer.12209.
      Garro, A. J. , McBeth, D. L. , Lima, V. , & Lieber, C. S. (1991). Ethanol consumption inhibits fetal DNA methylation in mice: Implications for the fetal alcohol syndrome. Alcoholism: Clinical and Experimental Research, 15(3), 395-398. https://doi.org/10.1111/j.1530-0277.1991.tb00536.x.
      George, A. K. , Behera, J. , & Tyagi, N. (2018). Exercise mitigates alcohol induced endoplasmic reticulum stress-mediated cognitive impairment through ATF6-Herp signaling. Scientific Reports, 8, 5158. https://doi.org/10.1038/s41598-018-23568-z.
      Gu, W. , Zhan, H. , Zhou, X. Y. , Yao, L. , Yan, M. , Chen, A. , Liu, J. , Ren, X. , Zhang, X. , Liu, J. X. , & Liu, G. (2017). MicroRNA-22 regulates inflammation and angiogenesis via targeting VE-cadherin. FEBS Letters, 591(3), 513-526. https://doi.org/10.1002/1873-3468.12565.
      Gu, X. , Gong, H. , Shen, l , & Gu, Q. (2018). MicroRNA-129-5p inhibits human glioma cell proliferation and induces cell cycle arrest by directly targeting DNMT3A. American Journal of Translational Research, 10(9), 2834-2847.
      Guo, Y. , Chen, Y. , Carreon, S. , & Qiang, M. (2012). Chronic intermittent ethanol exposure and its removal induce a different miRNA expression pattern in primary cortical neuronal cultures. Alcoholism: Clinical and Experimental Research, 36, 1058-1066. https://doi.org/10.1111/j.1530-0277.2011.01689.x.
      Hamid, A. , Wani, N. A. , & Kaur, J. (2009). New perspectives on folate transport in relation to alcoholism-induced folate malabsorption-association with epigenome stability and cancer development. The FEBS Journal, 276(8), 2175-2191. https://doi.org/10.1111/j.1742-4658.2009.06959.x.
      Hassan, A. (2004). Homocysteine is a risk factor for cerebral small vessel disease, acting via endothelial dysfunction. Brain, 127, 212-219. https://doi.org/10.1093/brain/awh023.
      Higuchi H. , Adachi, M. , Miura, S. , Gores, G. J. , & Ishii, H. (2001). The mitochondrial permeability transition contributes to acute ethanol-induced apoptosis in rat hepatocytes. Hepatology, 34(2), 320-328. http://doi.org/10.1053/jhep.2001.26380.
      Kalani, A. , Kamat, P. K. , Givvimani, S. , Brown, K. , Metreveli, N. , Tyagi, S. C. , & Tyagi, N. (2013). Nutri-epigenetics ameliorates blood-brain barrier damage and neurodegeneration in hyperhomocysteinemia: Role of folic acid. Journal of Molecular Neuroscience, 13, 202-215. https://doi.org/10.1007/s12031-013-0122-5.
      Kamat, P. K. , Kalani, A. , Givvimani, S. , Sathnur, P. B. , Tyagi, S. C. , & Tyagi, N. (2013). Hydrogen sulfide attenuates neurodegeneration and neurovascular dysfunction induced by intracerebral-administered homocysteine in mice. Neuroscience, 252, 302-319. https://doi.org/10.1016/j.neuroscience.2013.07.051.
      Kamat, P. K. , Kalani, A. , Tyagi, S. C. , & Tyagi, N. (2015). Hydrogen sulfide epigenetically attenuates homocysteine-induced mitochondrial toxicity mediated through NMDA receptor in mouse brain endothelial (bEnd3) cells. Journal of Cellular Physiology, 230(2), 378-394. https://doi.org/10.1002/jcp.24722.
      Kamat P. K. , Kyles P. , Kalani A. , Tyagi N. (2016). Hydrogen Sulfide Ameliorates Homocysteine-Induced Alzheimer's Disease-Like Pathology, Blood-Brain Barrier Disruption, and Synaptic Disorder. Molecular Neurobiology, 53(4), 2451-2467. http://doi.org/10.1007/s12035-015-9212-4.
      Kamath A. F. , Chauhan A. K. , Kisucka J. , Dole V. S. , Loscalzo J. , Handy D. E. , Wagner D. D. (2006). Elevated levels of homocysteine compromise blood-brain barrier integrity in mice. Blood, 107(2), 591-593. http://doi.org/10.1182/blood-2005-06-2506.
      Kamoun, P. (2004). Endogenous production of hydrogen sulfide in mammals. Amino Acids, 26, 243-254. https://doi.org/10.1007/s00726-004-0072-x.
      Ke, Z. , Wang, X. , Liu, Y. , Fan, Z. , Chen, G. , Xu, M. , Bower, K. A. , Frank, J. A. , Li, M. , Fang, S. , Shi, X. , & Luo, J. (2011). Ethanol induces endoplasmic reticulum stress in the developing brain. Alcoholism: Clinical and Experimental Research, 35(9), 1574-1583. https://doi.org/10.1111/j.1530-0277.2011.01503.x.
      Kim, K. C. , Go, H. S. , Bak, H. R. , Choi, C. S. , Choi, I. , Kim, P. , Han, S. H. , Han, S. M. , Shin, C. Y. , & Ko, K. H. (2010). Prenatal exposure of ethanol induces increased glutamatergic neuronal differentiation of neural progenitor cells. Journal of Biomedical Science, 17(1), 85. https://doi.org/10.1186/1423-0127-17-85.
      Kimura, H. (2011). Hydrogen sulfide: its production, release and functions. Amino Acids, 41, 113-121. https://doi.org/10.1007/s00726-010-0510-x.
      Lalwani, M. K. , Sharma, M. , Singh, A. R. , Chauhan, R. K. , Patowary, A. , Singh, N. , Scaria, V. , & Sivasubbu, S. (2012). Reverse genetics screen in zebrafish identifies a role of miR-142a-3p in vascular development and integrity. PLOS One, 7(12), e52588. https://doi.org/10.1371/journal.pone.0052588.
      Lehmann, M. , Gottfries, C. G. , & Regland, B. (1999). Identification of cognitive impairment in the elderly: Homocysteine is an early marker. Dementia and Geriatric Cognitive Disorders, 10, 12-20. https://doi.org/10.1159/000017092.
      Levonen, A. L. , Lapatto, R. , Saksela, M. , & Raivio, K. O. (2000). Human cystathionine gamma-lyase: Developmental and in vitro expression of two isoforms. Biochemical Journal, 347, 1-5.
      Lowicka, E. , & Beltowski, J. (2007). Hydrogen sulfide (H2S)-The third gas of interest for pharmacologists. Pharmacological Reports, 59(1), 4-24.
      Lu, S. C. , Huang, Z. Z. , Yang, H. , Mato, J. M. , Avila, M. A. , & Tsukamoto, H. (2000). Changes in methionine adenosyltransferase and S-adenosylmethionine homeostasis in alcoholic rat liver. American Journal of Physiology: Gastrointestinal and Liver Physiology, 279(1), G178-G185. https://doi.org/10.1152/ajpgi.2000.279.1.G178.
      Morini, L. , Politi, L. , Zucchella, A. , & Polettini, A. (2007). Ethyl glucuronide and ethyl sulphate determination in serum by liquid chromatography-electrospray tandem mass spectrometry. Clinica Chimica Acta, 376(1-2), 213-219. https://doi.org/10.1016/j.cca.2006.08.024.
      Nooteboom, A. , Bleichrodt, R. P. , & Hendriks, T. (2006). Modulation of endothelial monolayer permeability induced by plasma obtained from lipopolysaccharide-stimulated whole blood. Clinical and Experimental Immunology, 144(2), 362-369. https://doi.org/10.1111/j.1365-2249.2006.03074.x.
      Okhawa, H. , Ohishi, N. , & Yagi, K. (1979). Assay of lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351-357. https://doi.org/10.1016/0003-2697(79)90738-3.
      Peter, M. E. (2010). Targeting of mRNAs by multiple miRNAs: The next step. Oncogene, 29, 2161-2164. https://doi.org/10.1038/onc.2010.59.
      Renthal, W. , & Nestler, E. J. (2009). Chromatin regulation in drug addiction and depression. Dialogues in Clinical Neuroscience, 11(3), 257-268. https://doi.org/10.31887/DCNS.2009.11.3/wrenthal.
      Sathyan, P. , Golden, H. B. , & Miranda, R. C. (2007). Competing interactions between micro-RNAs determine neural progenitor survival and proliferation after ethanol exposure: Evidence from an ex vivo model of the fetal cerebral cortical neuroepithelium. The Journal of Neuroscience, 27, 8546-8557. https://doi.org/10.1523/jneurosci.1269-07.2007.
      Schmitt, G. , Aderjan, R. , Keller, T. , & Wu, M. (1995). Ethyl glucuronide: An unusual ethanol metabolite in humans. Synthesis, analytical data, and determination in serum and urine. Journal of Analytical Toxicology, 19(2), 91-94. https://doi.org/10.1093/jat/19.2.91.
      Shukla, S. D. , Velazquez, J. , French, S. W. , Lu, S. C. , Ticku, M. K. , & Zakhari, S. (2008). Emerging role of epigenetics in the actions of alcohol. Alcoholism: Clinical and Experimental Research, 32(9), 1525-1534. https://doi.org/10.1111/j.1530-0277.2008.00729.x.
      Tang, Y. , Banan, A. , Forsyth, C. B. , Fields, J. Z. , Lau, C. K. , Zhang, L. J. , & Keshavarzian, A. (2008). Effect of alcohol on miR-212 expression in intestinal epithelial cells and its potential role in alcoholic liver disease. Alcoholism: Clinical and Experimental Research, 32, 355-364. https://doi.org/10.1111/j.1530-0277.2007.00584.x.
      Tyagi, N. , Givvimani, S. , Qipshidze, N. , Kundu, S. , Kapoor, S. , Vacek, J. C. , & Tyagi, S. C. (2010). Hydrogen sulphide mitigates matrix metalloproteinase-9 activity and neurovascular permeability in hyperhomocysteinemic mice. Neurochemistry International, 56, 301-307. https://doi.org/10.1016/j.neuint.2009.11.002.
      Tyagi, N. , Moshal, K. S. , Sen, U. , Vacek, T. P. , Kumar, M. , Hughes, Jr., W. M. , Kundu, S. , & Tyagi, S. C. (2009). H2S protects against methionine-induced oxidative stress in brain endothelial cells. Antioxidants & Redox Signaling, 11(1), 25-33. https://doi.org/10.1089/ars.2008.2073.
      Wang, Y. , Tong, J. , Chang, B. , Wang, B. , Zhang, D. , & Wang, B. (2014). Effects of alcohol on intestinal epithelial barrier permeability and expression of tight junction-associated proteins. Molecular Medical Reports, 9(6), 2352-2356. https://doi.org/10.3892/mmr.2014.2126.
      White, J. E. , & Tsan, M. F. (2001). Differential induction of TNF-alpha and MnSOD by endotoxin: Role of reactive oxygen species and NADPH oxidase. American Journal of Respiratory Cell and Molecular Biology, 24, 164-169. https://doi.org/10.1165/ajrcmb.24.2.4169.
      Wu, D. , & Cederbaum, A. I. (2003). Alcohol, oxidative stress, and free radical damage. Alcohol Research & Health, 27(4), 277-284. https://doi.org/10.1079/pns2006496.
      Yadav, S. , Pandey, A. , Shukla, A. , Talwekar, S. S. , Kumar, A. , Pant, A. B. , & Parmar, D. (2011). miR-497 and miR-302b regulate ethanol-induced neuronal cell death through BCL2 protein and cyclin D2. The Journal of Biological Chemistry, 286(43), 37347-37357. https://doi.org/10.1074/jbc.m111.235531.
      Yang, F. , & Luo, J. (2015). Endoplasmic reticulum stress and ethanol neurotoxicity. Biomolecules, 5(4), 2538-2553. https://doi.org/10.3390/biom5042538.
      Yin, H. , Hu, M. , Zhang, R. , Shen, Z. , Flatow, L. , & You, M. (2012). MicroRNA-217 promotes ethanol-induced fat accumulation in hepatocytes by down-regulating SIRT1. Journal of Biological Chemistry, 287(3), 9817-9826. https://doi.org/10.1074/jbc.m111.333534.
      Zhai, Y. , Behera, J. , Tyagi, S. C. , & Tyagi, N. (2019). Hydrogen sulfide attenuates homocysteine-induced osteoblast dysfunction by inhibiting mitochondrial toxicity. Journal of Cellular Physiology, 234(10), 18602-18614. https://doi.org/10.1002/jcp.28498.
      Zima, T. , Fialová, L. , Mestek, O. , Janebová, M. , Crkovská, J. , Malbohan, I. , Stípek, S. , Mikulíková, L. , & Popov, P. (2001). Oxidative stress, metabolism of ethanol and alcohol-related diseases. Journal of Biomedical Science, 8(1), 59-70. https://doi.org/10.1007/BF02255972.
    • Grant Information:
      R01 AR067667 United States AR NIAMS NIH HHS; AR-067667 United States NH NIH HHS
    • Contributed Indexing:
      Keywords: epigenetic CpG DNA methylation; homocysteine; miRNA regulation; tight junction protein; vascular permeability
    • Accession Number:
      0 (Dnmt3a protein, mouse)
      0 (MIRN218 microRNA, mouse)
      0 (MicroRNAs)
      0 (Tjp1 protein, mouse)
      0 (Zonula Occludens-1 Protein)
      0LVT1QZ0BA (Homocysteine)
      3K9958V90M (Ethanol)
      EC 2.1.1.37 (DNA (Cytosine-5-)-Methyltransferases)
      EC 2.1.1.37 (DNA Methyltransferase 3A)
      YY9FVM7NSN (Hydrogen Sulfide)
    • Publication Date:
      Date Created: 20210415 Date Completed: 20211129 Latest Revision: 20230110
    • Publication Date:
      20231215
    • Accession Number:
      10.1002/jcp.30382
    • Accession Number:
      33855696