Global phylogeography of a pantropical mangrove genus Rhizophora.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • Subject Terms:
    • Abstract:
      Rhizophora is a key genus for revealing the formation process of the pantropical distribution of mangroves. In this study, in order to fully understand the historical scenario of Rhizophora that achieved pantropical distribution, we conducted phylogeographic analyses based on nucleotide sequences of chloroplast and nuclear DNA as well as microsatellites for samples collected worldwide. Phylogenetic trees suggested the monophyly of each AEP and IWP lineages respectively except for R. samoensis and R. × selala. The divergence time between the two lineages was 10.6 million years ago on a dated phylogeny, and biogeographic stochastic mapping analyses supported these lineages separated following a vicariant event. These data suggested that the closure of the Tethys Seaway and the reduction in mangrove distribution followed by Mid-Miocene cooling were key factors that caused the linage diversification. Phylogeographic analyses also suggested the formation of the distinctive genetic structure at the AEP region across the American continents around Pliocene. Furthermore, long-distance trans-pacific dispersal occurred from the Pacific coast of American continents to the South Pacific and formed F1 hybrid, resulting in gene exchange between the IWP and AEP lineages after 11 million years of isolation. Considering the phylogeny and phylogeography with divergence time, a comprehensive picture of the historical scenario behind the pantropical distribution of Rhizophora is updated.
    • References:
      Spalding, M., Kainuma, M. & Collins, L. World Atlas of Mangroves. (Earthscan, 2010).
      Duke, N. et al. A world without mangroves?. Science 317, 41–42 (2007). (PMID: 1761532210.1126/science.317.5834.41b)
      Friess, D. et al. The state of the world’s mangrove forests: past, present, and future. Annu. Rev. Env. Resour. 44, 89–115 (2019). (PMID: 10.1146/annurev-environ-101718-033302)
      Wee, et al. The integration and application of genomic information in mangrove conservation. Conserv. Biol. 33, 206–209 (2019). (PMID: 2979749310.1111/cobi.13140)
      Duke, N., Lo, E. & Sun, M. Global distribution and genetic discontinuities of mangroves—emerging patterns in the evolution of Rhizophora. Trees-Struct. Funct. 16, 65–79 (2002). (PMID: 10.1007/s00468-001-0141-7)
      Ellison, A. M., Farnsworth, E. J. & Merkt, R. E. Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Global Ecol. Biogeogr. 8, 95–115 (1999).
      Plaziat, J.-C., Cavagnetto, C., Koeniguer, J.-C. & Baltzer, F. History and biogeography of the mangrove ecosystem, based on a critical reassessment of the paleontological record. Wetl. Ecol. Manag. 9, 161–180 (2001). (PMID: 10.1023/A:1011118204434)
      Duke, N., Ball, M. & Ellison, J. Factors influencing biodiversity and distributional gradients in mangroves. Global Ecol. Biogeogr. Lett. 7, 27–47 (1998). (PMID: 10.2307/2997695)
      Duke, N. Genetic diversity, distributional barriers and rafting continents—more thoughts on the evolution of mangroves. Hydrobiologia 295, 167–181 (1995). (PMID: 10.1007/BF00029124)
      Tomlinson, P. B. The botany of mangroves. (Cambridge University press, 1986).
      Schwarzbach, A. E. & Ricklefs, R. E. Systematic affinities of Rhizophoraceae and Anisophylleaceae, and intergeneric relationships within Rhizophoraceae, based on chloroplast DNA, nuclear ribosomal DNA, and morphology. Am. J. Bot. 87, 547–564 (2000). (PMID: 1076672710.2307/2656599)
      Lo, E. Y. Y. Testing hybridization hypotheses and evaluating the evolutionary potential of hybrids in mangrove plant species. J. Evol. Biol. 23, 2249–2261 (2010). (PMID: 2079613410.1111/j.1420-9101.2010.02087.x)
      Takayama, K., Tamura, M., Tateishi, Y., Webb, E. L. & Kajita, T. Strong genetic structure over the American continents and transoceanic dispersal in the mangrove genus Rhizophora (Rhizophoraceae) revealed by broad-scale nuclear and chloroplast DNA analysis. Am. J. Bot. 100, 1191–1201 (2013). (PMID: 2371190410.3732/ajb.1200567)
      Lo, E., Duke, N. & Sun, M. Phylogeographic pattern of Rhizophora (Rhizophoraceae) reveals the importance of both vicariance and long-distance oceanic dispersal to modern mangrove distribution. BMC Evol. Biol. 14, 83 (2014). (PMID: 24742016402116910.1186/1471-2148-14-83)
      Chen, Y. et al. Applications of multiple nuclear genes to the molecular phylogeny, population genetics and hybrid identification in the mangrove genus Rhizophora. PLoS ONE 10, e0145058 (2015). (PMID: 26674070468263610.1371/journal.pone.0145058)
      Xu, S. H. et al. The origin, diversification and adaptation of a major mangrove clade (Rhizophoreae) revealed by whole-genome sequencing. Natl. Sci. Rev. 4, 721–734 (2017). (PMID: 3125895010.1093/nsr/nwx065)
      Tyagi, A. P. Cytogenetics and reproductive biology of mangroves in Rhizophoraceae. Aust. J. Bot. 50, 601–605 (2002). (PMID: 10.1071/BT01080)
      Tyagi, A. P. Chromosomal Pairing and Pollen Viability in Rhizophora mangle and Rhizophora stylosa Hybrids. S. Pac. J. Nat. Sci. 20, 1–3 (2002). (PMID: 10.1071/SP02001)
      Tyagi, A. P. & Singh, E. V. V. Pollen fertility and intraspecific and interspecific compatibility in mangroves of Fiji. Sex. Plant Reprod. 11, 60–63 (1998). (PMID: 10.1007/s004970050121)
      Steininger, F. F. & Rögl, F. Paleogeography and palinspastic reconstruction of the Neogene of the Mediterranean and Paratethys. Geol. Soc. Spec. Publ. 17, 659–668 (1984). (PMID: 10.1144/GSL.SP.1984.017.01.52)
      Harzhauser, M. et al. Biogeographic responses to geodynamics: a key study all around the Oligo-Miocene Tethyan Seaway. Zoo. Anz. 246, 241–256 (2007). (PMID: 10.1016/j.jcz.2007.05.001)
      Vrielynck, B., Odin, G. & Dercourt, J. Miocene palaeogeography of the Tethys Ocean; potential global correlations in the Mediterranean. Miocene stratigraphy: an integrated approach. Elsevier Science, (1997).
      Harzhauser, M., Piller, W. E. & Steininger, F. F. Circum-Mediterranean Oligo-Miocene biogeographic evolution—the gastropods’ point of view. Palaeogeogr. Palaeoclimatol. Palaeoecol. 183, 103–133 (2002). (PMID: 10.1016/S0031-0182(01)00464-3)
      Dercourt, J. et al. Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the LIAS. Tectonophysics 123, 241–315 (1986). (PMID: 10.1016/0040-1951(86)90199-X)
      Marko, P. B. Fossil calibration of molecular clocks and the divergence times of geminate species pairs separated by the Isthmus of Panama. Mol. Biol. Evol. 19, 2005–2021 (2002). (PMID: 1241160910.1093/oxfordjournals.molbev.a004024)
      Saenger, P. Mangrove vegetation: an evolutionary perspective. Mar. Freshw. Res. 49, 277–286 (1998). (PMID: 10.1071/MF97139)
      Muller, J. & Caratini, C. Pollen of Rhizophora (Rhizophoraceae) as a guide fossil. Pollen Spores 19, 361–390 (1977).
      Muller, J. Fossil pollen records of extant angiosperms. Bot. Rev. 47, 1–142 (1981). (PMID: 10.1007/BF02860537)
      Germeraad, J. H., Hopping, C. A. & Muller, J. Palynology of tertiary sediments from tropical areas. Rev. Palaeobot. Palyno. 6, 189–348 (1968). (PMID: 10.1016/0034-6667(68)90051-1)
      Zachos, J., Pagani, H., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001). (PMID: 10.1126/science.105941211326091)
      Pole, M. S. & Macphail, M. K. Eocene Nypa from Regatta Point, Tasmania. Rev. Palaeobot. Palyno. 92, 55–67 (1996). (PMID: 10.1016/0034-6667(95)00099-2)
      Hornibrook, N. D. B. New Zealand Cenozoic marine paleoclimates: a review based on the distribution of some shallow water and terrestrial biota. Pacific Neogene: environment, evolution, and events, 83–106 University of Tokyo Press, (1992).
      Hou, Z. & Li, S. Tethyan changes shaped aquatic diversification. Biol. Rev. 93, 874–896 (2018). (PMID: 2902436610.1111/brv.12376)
      Wee, A. K. S. et al. Genetic differentiation and phylogeography of partially sympatric species complex Rhizophora mucronata Lam. and R. stylosa Griff. using SSR markers. BMC Evol. Biol. 15, 57 (2015). (PMID: 25888261438992410.1186/s12862-015-0331-3)
      Ng, W. L. et al. Closely related and sympatric but not all the same: genetic variation of Indo-West Pacific Rhizophora mangroves across the Malay Peninsula. Conserv. Genet. 16, 137–150 (2015). (PMID: 10.1007/s10592-014-0647-3)
      Doyle, J. & Doyle, J. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 9, 11–15 (1987).
      Strand, A. E., Leebens-Mack, J. & Milligan, B. G. Nuclear DNA-based markers for plant evolutionary biology. Mol. Ecol. 6, 113–118 (1997). (PMID: 906193810.1046/j.1365-294X.1997.00153.x)
      Cronn, R. C., Small, R. L. & Wendel, J. F. Duplicated genes evolve independently after polyploid formation in cotton. Proc. Natl. Acad. Sci. USA 96, 14406–14411 (1999). (PMID: 1058871810.1073/pnas.96.25.1440624449)
      Hayashi, K. PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. Genome Res. 1, 34–38 (1991). (PMID: 10.1101/gr.1.1.34)
      Rozas, J., Sanchez-DelBarrio, J. C., Messeguer, X. & Rozas, R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496–2497 (2003). (PMID: 10.1093/bioinformatics/btg35914668244)
      Swofford, D.L. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Sinauer Associates, Sunderland, Massachusetts, (2002).
      Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014). (PMID: 24451623399814410.1093/bioinformatics/btu033)
      Leigh, J. W. & Bryant, D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015). (PMID: 10.1111/2041-210X.12410)
      Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, I37-48 (1999). (PMID: 10.1093/oxfordjournals.molbev.a026036)
      Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007). (PMID: 17996036224747610.1186/1471-2148-7-214)
      Heled, J. & Drummond, A. J. Bayesian inference of species trees from multilocus data. Mol. Biol. Evol. 27, 570–580 (2009). (PMID: 19906793282229010.1093/molbev/msp274)
      Graham, A. Paleobotanical evidence and molecular data in reconstructing the historical phytogeography of Rhizophoraceae. Ann. Mo. Bot. Gard. 93, 325–334 (2006). (PMID: 10.3417/0026-6493(2006)93[325:PEAMDI]2.0.CO;2)
      Rambaut, A. Fig Tree v1.4. (2012). Available at http://tree.bio.ed.ac.uk/software/figtree/.
      Matzke, N. J. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 242–248 (2013). (PMID: 10.21425/F55419694)
      Blair, C. & He, X. J. RASP 4: ancestral state reconstruction tool for multiple genes and characters. Mol. Biol. Evol. 37, 604–606 (2020). (PMID: 3167077410.1093/molbev/msz257)
      Takayama, K., Tamura, M., Tateishi, Y. & Kajita, T. Isolation and characterization of microsatellite loci in a mangrove species, Rhizophora stylosa (Rhizophoraceae). Conserv. Genet. Resour. 1, 175–178 (2009). (PMID: 10.1007/s12686-009-9042-7)
      Takayama, K., Tamura, M., Tateishi, Y. & Kajita, T. Isolation and characterization of microsatellite loci in the red mangrove Rhizophora mangle (Rhizophoraceae) and its related species. Conserv. Genet. 9, 1323–1325 (2008). (PMID: 10.1007/s10592-007-9475-z)
      Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000). (PMID: 10835412146109610.1093/genetics/155.2.945)
      Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol. Ecol. Notes. 7, 574–578 (2007). (PMID: 18784791197477910.1111/j.1471-8286.2007.01758.x)
      Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332 (2009). (PMID: 21564903351802510.1111/j.1755-0998.2009.02591.x)
      Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005). (PMID: 10.1111/j.1365-294X.2005.02553.x15969739)
    • Accession Number:
      0 (DNA, Plant)
    • Publication Date:
      Date Created: 20210331 Date Completed: 20211101 Latest Revision: 20230130
    • Publication Date:
      20240829
    • Accession Number:
      PMC8009884
    • Accession Number:
      10.1038/s41598-021-85844-9
    • Accession Number:
      33785819