Hippocampal subfields atrophy contribute more to cognitive impairment in middle-aged patients with type 2 diabetes rather than microvascular lesions.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Verlag Country of Publication: Germany NLM ID: 9200299 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-5233 (Electronic) Linking ISSN: 09405429 NLM ISO Abbreviation: Acta Diabetol Subsets: MEDLINE
    • Publication Information:
      Publication: Berlin : Springer Verlag
      Original Publication: Berlin : Springer International, c1991-
    • Subject Terms:
    • Abstract:
      Aims: Neurodegeneration and microvascular lesions are related to cognitive impairment in type 2 diabetes mellitus (T2DM). We aimed to use the volume of hippocampal subfields and the burden of white matter hyperintensities (WMH) as neurodegeneration and microangiopathy markers, respectively, to investigate their potential associations with cognitive impairment in T2DM patients.
      Methods: A total of 76 T2DM patients and 45 neurologically unimpaired normal controls were enrolled between February 2016 to August 2018. All participants underwent structural magnetic resonance imaging (MRI) and Montreal Cognitive Assessment (MoCA). The T2DM patients were divided into the T2DM without mild cognitive impairment (T2noMCI) group (n = 44) and the T2DM with mild cognitive impairment (T2MCI) group (n = 32) according to MoCA scores. We used automatic brain segmentation and quantitative technique to assess the volume of twelve hippocampal subfields and WMH on MRI. We used age, sex, education, and total intracranial volume as our covariates and the Bonferroni method for multiple comparison correction.
      Results: Both the T2MCI group and T2noMCI group showed significant hippocampal subfields atrophy compared to the controls, which were mainly in the left hippocampal tail, left CA1, bilateral molecular layer, bilateral dentate gyrus, and bilateral CA4 (all p < 0.0042). No significant differences in the volume of total WMH, deep-WMH, and periventricular-WMH were found among the three groups. The HbA1c levels were significantly negatively correlated with hippocampal atrophy, and the MoCA scores were positively correlated with bilateral hippocampal volume in T2DM patients and all samples. Mediation analyses demonstrated that the association of HbA1c levels with cognitive function was mediated by hippocampal subfields volume.
      Conclusion: Widespread hippocampal atrophies across the subfields have been found in middle-aged T2DM patients, which was positively correlated with the MoCA scores and negatively correlated with the HbA1c levels. The association of HbA1c levels with cognitive function was mediated by some crucial hippocampal subfields volume. In middle-aged patients with T2DM, the neurodegeneration is more strongly associated with cognitive impairment than microvascular lesions. Trail Registeration This study was registered on Clinical-Trails.gov (NCT02738671).
      (© 2021. Springer-Verlag Italia S.r.l., part of Springer Nature.)
    • References:
      Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N et al (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract 157:107843. https://doi.org/10.1016/j.diabres.2019.107843. (PMID: 10.1016/j.diabres.2019.107843)
      McCrimmon RJ, Ryan CM, Frier BM (2012) Diabetes and cognitive dysfunction. Lancet 379(9833):2291–2299. https://doi.org/10.1016/S0140-6736(12)60360-2. (PMID: 10.1016/S0140-6736(12)60360-222683129)
      Koekkoek PS, Kappelle LJ, van den Berg E, Rutten GE, Biessels GJ (2015) Cognitive function in patients with diabetes mellitus: guidance for daily care. Lancet Neurol 14(3):329–340. https://doi.org/10.1016/S1474-4422(14)70249-2. (PMID: 10.1016/S1474-4422(14)70249-225728442)
      Kullmann S, Kleinridders A, Small DM, Fritsche A, Haring HU, Preissl H et al (2020) Central nervous pathways of insulin action in the control of metabolism and food intake. Lancet Diabetes Endocrinol 8(6):524–534. https://doi.org/10.1016/S2213-8587(20)30113-3. (PMID: 10.1016/S2213-8587(20)30113-332445739)
      Westermark P, Andersson A, Westermark GT (2011) Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 91(3):795–826. https://doi.org/10.1152/physrev.00042.2009. (PMID: 10.1152/physrev.00042.200921742788)
      Muriach M, Flores-Bellver M, Romero FJ, Barcia JM (2014) Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxid Med Cell Longev 2014:102158. https://doi.org/10.1155/2014/102158. (PMID: 10.1155/2014/102158252151714158559)
      Byun K, Yoo Y, Son M, Lee J, Jeong GB, Park YM et al (2017) Advanced glycation end-products produced systemically and by macrophages: a common contributor to inflammation and degenerative diseases. Pharmacol Ther 177:44–55. https://doi.org/10.1016/j.pharmthera.2017.02.030. (PMID: 10.1016/j.pharmthera.2017.02.03028223234)
      Henneman WJ, Sluimer JD, Barnes J, van der Flier WM, Sluimer IC, Fox NC et al (2009) Hippocampal atrophy rates in Alzheimer disease: added value over whole brain volume measures. Neurology 72(11):999–1007. https://doi.org/10.1212/01.wnl.0000344568.09360.31. (PMID: 10.1212/01.wnl.0000344568.09360.31192897402821835)
      Gold SM, Dziobek I, Sweat V, Tirsi A, Rogers K, Bruehl H et al (2007) Hippocampal damage and memory impairments as possible early brain complications of type 2 diabetes. Diabetologia 50(4):711–719. https://doi.org/10.1007/s00125-007-0602-7. (PMID: 10.1007/s00125-007-0602-717334649)
      Bruehl H, Wolf OT, Sweat V, Tirsi A, Richardson S, Convit A (2009) Modifiers of cognitive function and brain structure in middle-aged and elderly individuals with type 2 diabetes mellitus. Brain Res 1280:186–194. https://doi.org/10.1016/j.brainres.2009.05.032. (PMID: 10.1016/j.brainres.2009.05.032194637942749480)
      Stranahan AM, Arumugam TV, Cutler RG, Lee K, Egan JM, Mattson MP (2008) Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci 11(3):309–317. https://doi.org/10.1038/nn2055. (PMID: 10.1038/nn2055182780392927988)
      Fried PJ, Schilberg L, Brem AK, Saxena S, Wong B, Cypess AM et al (2017) Humans with type-2 diabetes show abnormal long-term potentiation-like cortical plasticity associated with verbal learning deficits. J Alzheimers Dis 55(1):89–100. https://doi.org/10.3233/JAD-160505. (PMID: 10.3233/JAD-160505276368475193103)
      Di Lorenzo F, Motta C, Bonni S, Mercuri NB, Caltagirone C, Martorana A et al (2019) LTP-like cortical plasticity is associated with verbal memory impairment in Alzheimer’s disease patients. Brain Stimul 12(1):148–151. https://doi.org/10.1016/j.brs.2018.10.009. (PMID: 10.1016/j.brs.2018.10.00930352737)
      Patenaude B, Smith SM, Kennedy DN, Jenkinson M (2011) A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56(3):907–922. https://doi.org/10.1016/j.neuroimage.2011.02.046. (PMID: 10.1016/j.neuroimage.2011.02.04621352927)
      Atoji Y, Wild JM (2006) Anatomy of the avian hippocampal formation. Rev Neurosci 17(1–2):3–15. https://doi.org/10.1515/revneuro.2006.17.1-2.3. (PMID: 10.1515/revneuro.2006.17.1-2.316703939)
      Zhang YW, Zhang JQ, Liu C, Wei P, Zhang X, Yuan QY et al (2015) Memory dysfunction in type 2 diabetes mellitus correlates with reduced hippocampal CA1 and subiculum volumes. Chin Med J (Engl) 128(4):465–471. https://doi.org/10.4103/0366-6999.151082. (PMID: 10.4103/0366-6999.151082)
      Li M, Huang L, Yang D, Luo C, Qin R, Zhang B et al (2020) Atrophy patterns of hippocampal subfields in T2DM patients with cognitive impairment. Endocrine 68(3):536–548. https://doi.org/10.1007/s12020-020-02249-w. (PMID: 10.1007/s12020-020-02249-w321724857308251)
      Tamura Y, Araki A (2015) Diabetes mellitus and white matter hyperintensity. Geriatr Gerontol Int 15(Suppl 1):34–42. https://doi.org/10.1111/ggi.12666. (PMID: 10.1111/ggi.1266626671155)
      van den Berg E, Geerlings MI, Biessels GJ, Nederkoorn PJ, Kloppenborg RP (2018) White matter hyperintensities and cognition in mild cognitive impairment and Alzheimer’s disease: a domain-specific meta-analysis. J Alzheimers Dis 63(2):515–527. https://doi.org/10.3233/JAD-170573. (PMID: 10.3233/JAD-17057329630548)
      Anstey KJ, Maller JJ, Meslin C, Christensen H, Jorm AF, Wen W et al (2004) Hippocampal and amygdalar volumes in relation to handedness in adults aged 60–64. NeuroReport 15(18):2825–2829. (PMID: 15597062)
      American Diabetes A (2018) Classification and diagnosis of diabetes: standards of medical care in diabetes-2018. Diabetes Care 41(Suppl 1):S13–S27. https://doi.org/10.2337/dc18-S002. (PMID: 10.2337/dc18-S002)
      Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I et al (2005) The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53(4):695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x. (PMID: 10.1111/j.1532-5415.2005.53221.x15817019)
      Iglesias JE, Augustinack JC, Nguyen K, Player CM, Player A, Wright M et al (2015) A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: application to adaptive segmentation of in vivo MRI. Neuroimage 115:117–137. https://doi.org/10.1016/j.neuroimage.2015.04.042. (PMID: 10.1016/j.neuroimage.2015.04.04225936807)
      Ithapu V, Singh V, Lindner C, Austin BP, Hinrichs C, Carlsson CM et al (2014) Extracting and summarizing white matter hyperintensities using supervised segmentation methods in Alzheimer’s disease risk and aging studies. Hum Brain Mapp 35(8):4219–4235. https://doi.org/10.1002/hbm.22472. (PMID: 10.1002/hbm.22472245107444107160)
      Hayes AF, Rockwood NJ (2017) Regression-based statistical mediation and moderation analysis in clinical research: observations, recommendations, and implementation. Behav Res Ther 98:39–57. https://doi.org/10.1016/j.brat.2016.11.001. (PMID: 10.1016/j.brat.2016.11.00127865431)
      Moran C, Phan TG, Chen J, Blizzard L, Beare R, Venn A et al (2013) Brain atrophy in type 2 diabetes: regional distribution and influence on cognition. Diabetes Care 36(12):4036–4042. https://doi.org/10.2337/dc13-0143. (PMID: 10.2337/dc13-0143239395393836136)
      Burgess N, Maguire EA, O’Keefe J (2002) The human hippocampus and spatial and episodic memory. Neuron 35(4):625–641. https://doi.org/10.1016/s0896-6273(02)00830-9. (PMID: 10.1016/s0896-6273(02)00830-912194864)
      Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA (2011) A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci 12(10):585–601. https://doi.org/10.1038/nrn3085. (PMID: 10.1038/nrn3085218974343312472)
      Carr VA, Viskontas IV, Engel SA, Knowlton BJ (2010) Neural activity in the hippocampus and perirhinal cortex during encoding is associated with the durability of episodic memory. J Cogn Neurosci 22(11):2652–2662. https://doi.org/10.1162/jocn.2009.21381. (PMID: 10.1162/jocn.2009.2138119925190)
      Tu LL, Sun Q, Wei LL, Shi J, Li JP (2019) Upregulation of GABA receptor promotes long-term potentiation and depotentiation in the hippocampal CA1 region of mice with type 2 diabetes mellitus. Exp Ther Med 18(4):2429–2436. https://doi.org/10.3892/etm.2019.7868. (PMID: 10.3892/etm.2019.7868315553546755275)
      Jin L, Li YP, Feng Q, Ren L, Wang F, Bo GJ et al (2018) Cognitive deficits and Alzheimer-like neuropathological impairments during adolescence in a rat model of type 2 diabetes mellitus. Neural Regen Res 13(11):1995–2004. https://doi.org/10.4103/1673-5374.239448. (PMID: 10.4103/1673-5374.239448302330756183048)
      Deem JD, Muta K, Scarlett JM, Morton GJ, Schwartz MW (2017) How should we think about the role of the brain in glucose homeostasis and diabetes? Diabetes 66(7):1758–1765. https://doi.org/10.2337/dbi16-0067. (PMID: 10.2337/dbi16-0067286031395482090)
      Kullmann S, Heni M, Fritsche A, Preissl H (2015) Insulin action in the human brain: evidence from neuroimaging studies. J Neuroendocrinol 27(6):419–423. https://doi.org/10.1111/jne.12254. (PMID: 10.1111/jne.1225425594822)
      Plum L, Schubert M, Bruning JC (2005) The role of insulin receptor signaling in the brain. Trends Endocrinol Metab 16(2):59–65. https://doi.org/10.1016/j.tem.2005.01.008. (PMID: 10.1016/j.tem.2005.01.00815734146)
      Tamura Y, Kimbara Y, Yamaoka T, Sato K, Tsuboi Y, Kodera R et al (2017) White matter hyperintensity in elderly patients with diabetes mellitus is associated with cognitive impairment, functional disability, and a high glycoalbumin/glycohemoglobin ratio. Front Aging Neurosci 9:220. https://doi.org/10.3389/fnagi.2017.00220. (PMID: 10.3389/fnagi.2017.00220287298345498506)
      Moran C, Beare R, Phan T, Starkstein S, Bruce D, Romina M et al (2017) Neuroimaging and its relevance to understanding pathways linking diabetes and cognitive dysfunction. J Alzheimers Dis 59(2):405–419. https://doi.org/10.3233/JAD-161166. (PMID: 10.3233/JAD-16116628527209)
      Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R et al (2013) Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 12(8):822–838. https://doi.org/10.1016/S1474-4422(13)70124-8. (PMID: 10.1016/S1474-4422(13)70124-8238672003714437)
      Rosso AL, Verghese J, Metti AL, Boudreau RM, Aizenstein HJ, Kritchevsky S et al (2017) Slowing gait and risk for cognitive impairment: the hippocampus as a shared neural substrate. Neurology 89(4):336–342. https://doi.org/10.1212/WNL.0000000000004153. (PMID: 10.1212/WNL.0000000000004153286594215574674)
      Biessels GJ, Nobili F, Teunissen CE, Simo R, Scheltens P (2020) Understanding multifactorial brain changes in type 2 diabetes: a biomarker perspective. Lancet Neurol 19(8):699–710. https://doi.org/10.1016/S1474-4422(20)30139-3. (PMID: 10.1016/S1474-4422(20)30139-332445622)
      Launer LJ, Miller ME, Williamson JD, Lazar RM, Gerstein HC, Murray AM et al (2011) Effects of intensive glucose lowering on brain structure and function in people with type 2 diabetes (ACCORD MIND): a randomised open-label substudy. Lancet Neurol 10(11):969–977. https://doi.org/10.1016/S1474-4422(11)70188-0. (PMID: 10.1016/S1474-4422(11)70188-0219589493333485)
    • Grant Information:
      81720108022 National Natural Science Foundation of China
    • Contributed Indexing:
      Keywords: Cognitive impairment; Hippocampal subfields; Type 2 diabetes mellitus; White matter hyperintensities
    • Molecular Sequence:
      ClinicalTrials.gov NCT02738671
    • Accession Number:
      0 (Glycated Hemoglobin A)
    • Publication Date:
      Date Created: 20210322 Date Completed: 20210716 Latest Revision: 20221207
    • Publication Date:
      20221213
    • Accession Number:
      10.1007/s00592-020-01670-x
    • Accession Number:
      33751221