Plasma cell myeloma: role of histopathology, immunophenotyping, and genetic testing.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Verlag Country of Publication: Germany NLM ID: 7701953 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-2161 (Electronic) Linking ISSN: 03642348 NLM ISO Abbreviation: Skeletal Radiol Subsets: MEDLINE
    • Publication Information:
      Publication: Berlin : Springer Verlag
      Original Publication: Berlin, New York, Springer International.
    • Subject Terms:
    • Abstract:
      Myeloma is a malignant neoplasm of plasma cells with complex pathogenesis. Diagnosis and risk stratification require the integration of histology, radiology, serology, and genetic data. Bone marrow biopsies are essential for myeloma diagnosis by providing material for histologic and cytologic assessment as well as immunophenotypic and genetic studies. Flow cytometry and genetic studies are, in particular, becoming increasingly important for diagnosis, risk stratification, and assessment of treatment response. Myeloma has traditionally been characterized by recurrent cytogenetic abnormalities that can be divided into two subtypes: hyperdiploid, characterized by trisomies, and non-hyperdiploid, characterized by translocations involving chromosome 14. These abnormalities are thought to be primary events, initiating a premalignant state, which progresses to myeloma through the acquisition of secondary mutations. The emergence of next-generation sequencing has led to the discovery of numerous mutations and gene fusions that comprise the heterogenous genomic landscape of myeloma. As the underlying pathogenesis of myeloma continues to be delineated, possible therapeutic targets have also emerged. Herein, we describe the importance of histology, immunophenotype, and mutational analysis in the assessment of myeloma.
      (© 2021. ISS.)
    • References:
      Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: IARC; 2017.
      Landgren O, Kyle RA, Pfeiffer RM, Katzmann JA, Caporaso NE, Hayes RB, et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood. 2009;113:5412–7. (PMID: 191794642689042)
      Weiss BM, Abadie J, Verma P, Howard RS, Kuehl WM. A monoclonal gammopathy precedes multiple myeloma in most patients. Blood. 2009;113:5418–22. (PMID: 192341392689043)
      Kyle RA, Gertz MA, Witzig TE, Lust JA, Lacy MQ, Dispenzieri A, et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc. 2003;78:21–33. (PMID: 12528874)
      Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos MV, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15:e538–48. (PMID: 25439696)
      Palumbo A, Avet-Loiseau H, Oliva S, Lokhorst HM, Goldschmidt H, Rosinol L, et al. Revised international staging system for multiple myeloma: a report from international myeloma working group. J Clin Oncol. 2015;33:2863–9. (PMID: 262402244846284)
      Cowan AJ, Allen C, Barac A, Basaleem H, Bensenor I, Curado MP, et al. Global burden of multiple myeloma: a systematic analysis for the global burden of disease study 2016. JAMA Oncol. 2018;4:1221–7. (PMID: 298000656143021)
      Sohani A. Identifying blood and bone marrow abnormalities in the laboratory. In: Wang S, Hasserjian RP, editors. Diagnosis blood bone marrow disord. Cham: Springer; 2018. p. 1–15.
      Bartl R. Histologic classification and staging of multiple myeloma. Hematol Oncol. 1988;6:107–13. (PMID: 3391529)
      Matsue K, Matsue Y, Kumata K, Usui Y, Suehara Y, Fukumoto K, et al. Quantification of bone marrow plasma cell infiltration in multiple myeloma: usefulness of bone marrow aspirate clot with CD138 immunohistochemistry. Hematol Oncol. 2017;35:323–8. (PMID: 27140172)
      Banerjee SS, Verma S, Shanks JH. Morphological variants of plasma cell tumours. Histopathology. 2004;44:2–8. (PMID: 14717662)
      Fujino M. The histopathology of myeloma in the bone marrow. J Clin Exp Hematop. 2018;58:61–7. (PMID: 299989776413148)
      Eyden B, Banerjee S. Multiple myeloma showing signet-ring cell change. Histopathology. 1990;17:170–2. (PMID: 1699873)
      Chen K, Chan K, Nelson J, Padmanabhan A, Brittin G. Clear cell myeloma. Am J Surg Pathol. 1985;9:149–54. (PMID: 3976983)
      Bosnian C, Fusilli S, Bisceglia M, Musto P, Corsi A. Oncocytic nonsecretory multiple myeloma. Acta Haematol. 1996;96:50–6.
      Heerema-McKenney A, Waldron J, Hughes S, Zhan F, Sawyer J, Barlogie B, et al. Clinical, immunophenotypic, and genetic characterization of small lymphocyte-like plasma cell myeloma: a potential mimic of mature B-cell lymphoma. Am J Clin Pathol. 2010;133:265–70. (PMID: 20093236)
      Zukerberg LR, Ferry JA, Conlon M, Harris NL. Plasma cell myeloma with cleaved, multilobated, and monocytoid nuclei. Am J Clin Pathol. 1990;93:657–61. (PMID: 2183587)
      Harankhedkar S, Gupta R, Rahman K. Pleomorphic multinucleated plasma cells simulating megakaryocytes in an anaplastic variant of myeloma. Turkish J Hematol. 2018;35:150–1.
      Agrawal M, Kanakry J, Arnold CA, Suzman DL, Mathieu L, Kasamon YL, et al. Sustained remission and reversal of end-organ dysfunction in a patient with anaplastic myeloma. Ann Hematol. 2014;93:1245–6. (PMID: 242323054087073)
      Xie W, Tang G, Li S, Yin CC, Xu J. Anaplastic multiple myeloma resembling dysplastic megakaryocytes. Clin Case Rep. 2020;8:568–9. (PMID: 32185061)
      Bahmanyar M, Qi X, Chang H. Genomic aberrations in anaplastic multiple myeloma: high frequency of 1q21(CKS1B) amplifications. Leuk Res. 2013;37:1726–8. (PMID: 24169086)
      Ammannagari N, Celotto K, Neppalli V, Lee K, Holstein SA. Anaplastic multiple myeloma: an aggressive variant with a poor response to novel therapies. Clin Lymphoma, Myeloma Leuk. 2016;16:e129–31.
      Greipp PR, Leong T, Bennett JM, Gaillard JP, Klein B, Stewart JA, et al. Plasmablastic morphology - an independent prognostic factor with clinical and laboratory correlates: Eastern Cooperative Oncology Group (ECOG) myeloma trial E9486 report by the ECOG myeloma laboratory group. Blood. 1998;91:2501–7. (PMID: 9516151)
      Eyre TA, Littlewood TJ, Bain BJ. Dutcher bodies: cytoplasmic inclusions within the nucleus. Br J Haematol. 2014;166:946–7. (PMID: 24749887)
      Ribourtout B, Zandecki M. Plasma cell morphology in multiple myeloma and related disorders. Morphologie. 2015;99:38–62. (PMID: 25899140)
      Miyoshi I, Saito T, Taguchi H. Flaming cells in IgG myeloma. Intern Med. 2004;43:638. (PMID: 15335201)
      Matoso A, Rizack T, Treaba DO. Intracellular and extracellular rhomboid shaped crystalline inclusions in a case of IgG lambda restricted plasma cell myeloma: a case report and review of the literature. Diagn Pathol. 2010;5:2–5.
      Raje NS, Steele DJR, Lawrimore TM, Johri AM, Sohani AR. Case 29-2011: a 66-year-old woman with cardiac and renal failure. N Engl J Med. 2011;365:1129–38. (PMID: 21992126)
      Flores-Montero J, de Tute R, Paiva B, Perez JJ, Böttcher S, Wind H, et al. Immunophenotype of normal vs. myeloma plasma cells: toward antibody panel specifications for MRD detection in multiple myeloma. Cytom Part B - Clin Cytom. 2016;90:61–72.
      O’Connell FP, Pinkus JL, Pinkus GS. CD138 (Syndecan-1), a plasma cell marker: immunohistochemical profile in hematopoietic and nonhematopoietic neoplasms. Am J Clin Pathol. 2004;121:254–63. (PMID: 14983940)
      Joshi R, Horncastle D, Elderfield K, Lampert I, Rahemtulla A, Naresh KN. Bone marrow trephine combined with immunohistochemistry is superior to bone marrow aspirate in follow-up of myeloma patients. J Clin Pathol. 2008;61:213–6. (PMID: 17526802)
      Kumar S, Paiva B, Anderson KC, Durie B, Landgren O, Moreau P, et al. International myeloma working group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17:e328–46.
      Akhtar N, Rupral A, Pringle JH, Lauder I, Durrant STS. In situ hybridization detection of light chain mRNA in routine bone marrow trephines from patients with suspected myeloma. Br J Haematol. 1989;73:296–301. (PMID: 2513865)
      Ely SA, Knowles DM. Expression of CD56/neural cell adhesion molecule correlates with the presence of lytic bone lesions in multiple myeloma and distinguishes myeloma from monoclonal gammopathy of undetermined significance and lymphomas with plasmacytoid differentiation. Am J Pathol. 2002;160:1293–9. (PMID: 119437141867213)
      Ioannou MG, Stathakis E, Lazaris AC, Papathomas T, Tsiambas E, Koukoulis GK. Immunohistochemical evaluation of 95 bone marrow reactive plasmacytoses. Pathol Oncol Res. 2009;15:25–9. (PMID: 18553158)
      Schmidt-Hieber M, Pérez-Andrés M, Paiva B, Flores-Montero J, Perez JJ, Gutierrez NC, et al. CD117 expression in gammopathies is associated with an altered maturation of the myeloid and lymphoid hematopoietic cell compartments and favorable disease features. Haematologica. 2011;96:328–32. (PMID: 20971816)
      Kraj M, Pogłód R, Kopeć-Szlezak J, Sokołowska U, Woźniak J, Kruk B. C-kit receptor (CD117) expression on plasma cells in monoclonal gammopathies. Leuk Lymphoma. 2004;45:2281–9. (PMID: 15512818)
      Pruneri G, Fabris S, Baldini L, Carboni N, Zagano S, Colombi MA, et al. Immunohistochemical analysis of Cyclin D1 shows. Am J Pathol. 2000;156:1505–13. (PMID: 107930621876932)
      Specht K, Haralambieva E, Bink K, Kremer M, Mandl-Weber S, Koch I, et al. Different mechanisms of cyclin D1 overexpression in multiple myeloma revealed by fluorescence in situ hybridization and quantitative analysis of mRNA levels. Blood. 2004;104:1120–6. (PMID: 15090460)
      Mailankody S, Korde N, Lesokhin AM, Lendvai N, Hassoun H, Stetler-Stevenson M, et al. Minimal residual disease in multiple myeloma: bringing the bench to the bedside. Nat Rev Clin Oncol. 2015;12:286–95. (PMID: 256229767712493)
      Goicoechea I, Puig N, Cedena M-T, Burgos L, Cordón L, Vidriales MB, et al. Deep MRD profiling defines outcome and unveils different modes of treatment resistance in standard and high risk myeloma. Blood. 2020;137:49–60.
      Burgos L, Puig N, Cedena MT, Mateos MV, Lahuerta JJ, Paiva B, et al. Measurable residual disease in multiple myeloma: ready for clinical practice? J Hematol Oncol. 2020;13:1–8.
      Landgren O, Iskander K. Modern multiple myeloma therapy: deep, sustained treatment response and good clinical outcomes. J Intern Med. 2017;281:365–82. (PMID: 28205262)
      Soh KT, Wallace PK. Monitoring of measurable residual disease in multiple myeloma by multiparametric flow cytometry. Curr Protoc Cytom. 2019;90:1–29.
      Flores-Montero J, Sanoja-Flores L, Paiva B, Puig N, García-Sánchez O, Böttcher S, et al. Next generation flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia. 2017;31:2094–103. (PMID: 281049195629369)
      Paiva B, Puig N, García-Sanz R, San Miguel JF. Is this the time to introduce minimal residual disease in multiple myeloma clinical practice? Clin Cancer Res. 2015;21:2001–8. (PMID: 25754350)
      Romano A, Palumbo GA, Parrinello NL, Conticello C, Martello M, Terragna C. Minimal residual disease assessment within the bone marrow of multiple myeloma: a review of caveats, clinical significance and future perspectives. Front Oncol. 2019;9:1–14.
      Puig N, Sarasquete ME, Balanzategui A, Martínez J, Paiva B, García H, et al. Critical evaluation of ASO RQ-PCR for minimal residual disease evaluation in multiple myeloma. A comparative analysis with flow cytometry. Leukemia. 2014;28:391–7. (PMID: 23860448)
      Medina A, Puig N, Flores-Montero J, Jimenez C, Sarasquete ME, Garcia-Alvarez M, et al. Comparison of next-generation sequencing (NGS) and nextgeneration flow (NGF) for minimal residual disease (MRD) assessment in multiple myeloma. Blood Cancer J. 2020;10:108.
      Sarasquete ME, Garcia-Sanz R, Gonzalez D, Martinez J, Mateo G, Martinez P, et al. Minimal residual disease monitoring in multiple myeloma: a comparison between allelic-specific oligonucleotide real-time quantitative polymerase chain reaction and flow cytometry. Haematologica. 2005;90:1365–72. (PMID: 16219573)
      Gambella M, Omedé P, Spada S, Muccio VE, Gilestro M, Saraci E, et al. Minimal residual disease by flow cytometry and allelic-specific oligonucleotide real-time quantitative polymerase chain reaction in patients with myeloma receiving lenalidomide maintenance: a pooled analysis. Cancer. 2019;125:750–60. (PMID: 30561775)
      Martinez-Lopez J, Lahuerta JJ, Pepin F, González M, Barrio S, Ayala R, et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood. 2014;123:3073–9. (PMID: 246464714023416)
      Perrot A, Lauwers-Cances V, Corre J, Robillard N, Hulin C, Chretien ML, et al. Minimal residual disease negativity using deep sequencing is a major prognostic factor in multiple myeloma. Blood. 2018;132:2456–64. (PMID: 302497846284215)
      Smadja NV, Bastard C, Brigaudeau C, Leroux D, Fruchart C. Hypodiploidy is a major prognostic factor in multiple myeloma. Blood. 2001;98:2229–38. (PMID: 11568011)
      Debes-Marun CS, Dewald GW, Bryant S, Picken E, Santana-Dávila R, González-Paz N, et al. Chromosome abnormalities clustering and its implications for pathogenesis and prognosis in myeloma. Leukemia. 2003;17:427–36. (PMID: 12592343)
      Mikulasova A, Wardell CP, Murison A, Boyle EM, Jackson GH, Smetana J, et al. The spectrum of somatic mutations in monoclonal gammopathy of undetermined significance indicates a less complex genomic landscape than that in multiple myeloma. Haematologica. 2017;102:1617–25. (PMID: 285501835685224)
      Kumar SK, Rajkumar SV. The multiple myelomas - current concepts in cytogenetic classification and therapy. Nat Rev Clin Oncol. 2018;15:409–21. (PMID: 29686421)
      Manier S, Salem KZ, Park J, Landau DA, Getz G, Ghobrial IM. Genomic complexity of multiple myeloma and its clinical implications. Nat Rev Clin Oncol. 2017;14:100–13. (PMID: 27531699)
      Walker BA, Wardell CP, Murison A, Boyle EM, Begum DB, Dahir NM, et al. APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma. Nat Commun. 2015;6:6997. (PMID: 25904160)
      Misund K, Keane N, Stein CK, Asmann YW, Day G, Welsh S, et al. MYC dysregulation in the progression of multiple myeloma. Leukemia. 2020;34:322–6. (PMID: 31439946)
      Fonseca R, Debes-Marun CS, Picken EB, Dewald GW, Bryant SC, Winkler JM, et al. The recurrent IgH translocations are highly associated with nonhyperdiploid variant multiple myeloma. Blood. 2003;102:2562–7. (PMID: 12805059)
      Castaneda O, Baz R. Multiple myeloma genomics - a concise review. Acta Med Acad. 2019;48:57–67. (PMID: 31264433)
      Chesi M, Bergsagel PL, Brents LA, Smith CM, Gerhard DS, Kuehl WM. Dysregulation of cyclin D1 by translocation into an IgH gamma switch region in two multiple myeloma cell lines. Blood. 1996;88:674–81. (PMID: 8695815)
      Shaughnessy J, Gabrea A, Qi Y, Brents L, Zhan F, Tian E, et al. Cyclin D3 at 6p21 is dysregulated by recurrent chromosomal translocations to immunoglobulin loci in multiple myeloma. Blood. 2001;98:217–23. (PMID: 11418483)
      Ross FM, Chiecchio L, Dagrada G, Protheroe RKM, Stockley DM, Harrison CJ, et al. The t(14;20) is a poor prognostic factor in myeloma but is associated with long-term stable disease in monoclonal gammopathies of undetermined significance. Haematologica. 2010;95:1221–5. (PMID: 204101852895050)
      Hurt EM, Wiestner A, Rosenwald A, Shaffer AL, Campo E, Grogan T, et al. Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. Cancer Cell. 2004;5:191–9. (PMID: 14998494)
      Keats JJ, Reiman T, Maxwell CA, Taylor BJ, Larratt LM, Mant MJ, et al. In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood. 2003;101:1520–9. (PMID: 12393535)
      Foltz SM, Gao Q, Yoon CJ, Sun H, Yao L, Li Y, et al. Evolution and structure of clinically relevant gene fusions in multiple myeloma. Nat Commun. 2020;11:2666. (PMID: 324719907260243)
      Martinez-Garcia E, Popovic R, Min DJ, Sweet SMM, Thomas PM, Zamdborg L, et al. The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood. 2011;117:211–20. (PMID: 209746713037745)
      Avet-Loiseau H, Leleu X, Roussel M, Moreau P, Guerin-Charbonnel C, Caillot D, et al. Bortezomib plus dexamethasone induction improves outcome of patients with t(4;14) myeloma but not outcome of patients with del(17p). J Clin Oncol. 2010;28:4630–4. (PMID: 20644101)
      Avet-Loiseau H, Daviet A, Saunier S, Bataille R. Chromosome 13 abnormalities in multiple myeloma are mostly monosomy 13. Br J Haematol. 2000;111:1116–7.
      Walker BA, Leone PE, Chiecchio L, Dickens NJ, Jenner MW, Boyd KD, et al. A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. Blood. 2010;116:56–65.
      Walker BA, Mavrommatis K, Wardell CP, Ashby TC, Bauer M, Davies F, et al. A high-risk, double-hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia. 2019;33:159–70. (PMID: 29967379)
      Walker BA, Mavrommatis K, Wardell CP, Cody Ashby T, Bauer M, Davies FE, et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood. 2018;132:587–97. (PMID: 298847416097138)
      Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D, et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell. 2014;25:91–101. (PMID: 244342124241387)
      Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011;471:467–72. (PMID: 214307753560292)
      Walker BA, Boyle EM, Wardell CP, Murison A, Begum DB, Dahir NM, et al. Mutational spectrum, copy number changes, and outcome: results of a sequencing study of patients with newly diagnosed myeloma. J Clin Oncol. 2015;33:3911–20. (PMID: 26282654)
      Cleynen A, Szalat R, Kemal Samur M, Robiou Du Pont S, Buisson L, Boyle E, et al. Expressed fusion gene landscape and its impact in multiple myeloma. Nat Commun. 2017;8:1893. (PMID: 291966155711960)
      Morgan GJ, He J, Tytarenko R, Patel P, Stephens OW, Zhong S, et al. Kinase domain activation through gene rearrangement in multiple myeloma. Leukemia. 2018;32:2435–44. (PMID: 296542696224403)
      Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481:306–13. (PMID: 222586093367003)
      Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014;5:2997. (PMID: 24429703)
      Rasche L, Chavan SS, Stephens OW, Patel PH, Tytarenko R, Ashby C, et al. Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nat Commun. 2017;8:268. (PMID: 288147635559527)
      Fakhri B, Vij R. Clonal evolution in multiple myeloma. Clin Lymphoma, Myeloma Leuk. 2016;16:S130–4.
      Kis O, Kaedbey R, Chow S, Danesh A, Dowar M, Li T, et al. Circulating tumour DNA sequence analysis as an alternative to multiple myeloma bone marrow aspirates. Nat Commun. 2017;8:15086. (PMID: 284922265437268)
      Pugh TJ. Circulating tumour DNA for detecting minimal residual disease in multiple myeloma. Semin Hematol. 2018;55:38–40. (PMID: 29759151)
    • Contributed Indexing:
      Keywords: Cytogenetics; Flow cytometry; Fluorescence in situ hybridization; Myeloma; Next-generation sequencing; Plasma cell
    • Publication Date:
      Date Created: 20210309 Date Completed: 20211130 Latest Revision: 20211130
    • Publication Date:
      20231215
    • Accession Number:
      10.1007/s00256-021-03754-3
    • Accession Number:
      33687521