Gut microbiota resilience in horse athletes following holidays out to pasture.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • Subject Terms:
    • Abstract:
      Elite horse athletes that live in individual boxes and train and compete for hours experience long-term physical and mental stress that compromises animal welfare and alters the gut microbiota. We therefore assessed if a temporary period out to pasture with conspecifics could improve animal welfare and in turn, favorably affect intestinal microbiota composition. A total of 27 athletes were monitored before and after a period of 1.5 months out to pasture, and their fecal microbiota and behavior profiles were compared to those of 18 horses kept in individual boxes. The overall diversity and microbiota composition of pasture and control individuals were temporally similar, suggesting resilience to environmental challenges. However, pasture exposure induced an increase in Ruminococcus and Coprococcus that lasted 1-month after the return to individual boxes, which may have promoted beneficial effects on health and welfare. Associations between the gut microbiota composition and behavior indicating poor welfare were established. Furthermore, withdrawn behavior was associated with the relative abundances of Lachnospiraceae AC2044 group and Clostridiales family XIII. Both accommodate a large part of butyrate-producing bacterial genera. While we cannot infer causality within this study, arguably, these findings suggest that management practices maintained over a longer period of time may moderate the behavior link to the gut ecosystem beyond its resilience potential.
    • References:
      Sommer, F., Anderson, J. M., Bharti, R., Raes, J. & Rosenstiel, P. The resilience of the intestinal microbiota influences health and disease. Nat. Rev. Microbiol. 15, 630–638 (2017). (PMID: 2862623110.1038/nrmicro.2017.58)
      Mach, N. & Clark, A. Micronutrientdeficiencies and the human gut microbiota. Trends Microbiol. 25, 607–610 (2017). (PMID: 2864572410.1016/j.tim.2017.06.004)
      Ruet, A. et al. Animals housing horses in individual boxes is a challenge with regard to welfare. Animals 9, 621 (2019). (PMID: 10.3390/ani90906216770668)
      Farm Animal Welfare Committee (FAWC). FAWC updates the five freedoms. Vet. Rec. 17, 357 (1992).
      Mormede, P. et al. Animal welfare: Context, definition, evaluation. INRA Prod. Anim. 31, 145–162 (2018). (PMID: 10.20870/productions-animales.2018.31.2.2299)
      Wong, B. B. M. & Candolin, U. Behavioral responses to changing environments. Behav. Ecol. 26, 665–673 (2015). (PMID: 10.1093/beheco/aru183)
      Dellmeier, G. R. Motivation in relation to the welfare of enclosed livestock. Appl. Anim. Behav. Sci. 22, 129–138 (1989). (PMID: 10.1016/0168-1591(89)90049-X)
      Mach, N. et al. Priming for welfare: Gut microbiota is associated with equitation conditions and behavior in horse athletes. Sci. Rep. 10, 8311 (2020). (PMID: 32433513723993810.1038/s41598-020-65444-9)
      Rhee, S. H., Pothoulakis, C. & Mayer, E. A. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat. Rev. Gastroenterol. Hepatol. 6, 306–314 (2009). (PMID: 1940427110.1038/nrgastro.2009.35)
      Johnson, K. V. A. & Foster, K. R. Why does the microbiome affect behaviour?. Nat. Rev. Microbiol. 16, 647–655 (2018). (PMID: 2969148210.1038/s41579-018-0014-3)
      Destrez, A., Grimm, P. & Julliand, V. Dietary-induced modulation of the hindgut microbiota is related to behavioral responses during stressful events in horses. Physiol. Behav. 202, 94–100 (2019). (PMID: 3072671910.1016/j.physbeh.2019.02.003)
      Bulmer, L. S. et al. High-starch diets alter equine faecal microbiota and increase behavioural reactivity. Sci. Rep. 9, 18621 (2019). (PMID: 31819069690159010.1038/s41598-019-54039-8)
      Perry, E. et al. Effect of road transport on the equine cecal microbiota. J. Equine Vet. Sci. 68, 12–20 (2018). (PMID: 3125688210.1016/j.jevs.2018.04.004)
      Jiang, H. et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain. Behav. Immun. 48, 186–194 (2015). (PMID: 2588291210.1016/j.bbi.2015.03.016)
      Rogers, G. B. et al. From gut dysbiosis to altered brain function and mental illness: Mechanisms and pathways. Mol. Psychiatry 21, 738–748 (2016). (PMID: 27090305487918410.1038/mp.2016.50)
      Du, Y., Gao, X. R., Peng, L. & Ge, J. F. Crosstalk between the microbiota-gut-brain axis and depression. Heliyon 6, E04097 (2020). (PMID: 32529075727643410.1016/j.heliyon.2020.e04097)
      Valles-Colomer, M. et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 4, 623–632 (2019). (PMID: 3071884810.1038/s41564-018-0337-x)
      Bercik, P. et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol. Motil. 23, 1132–1139 (2011). (PMID: 21988661341372410.1111/j.1365-2982.2011.01796.x)
      Ruet, A. et al. Effects of a temporary period on pasture on the welfare state of horses housed in individual boxes. Appl. Anim. Behav. Sci. 228, 105027 (2020). (PMID: 10.1016/j.applanim.2020.105027)
      Lesimple, C. Indicators of horse Welfare: State-of-the-Art. Animals 10, 294 (2020). (PMID: 10.3390/ani100202947070675)
      Ruet, A. et al. Horses could perceive riding differently depending on the way they express poor welfare in the stable. J. Equine Vet. Sci. 94, 103206 (2020). (PMID: 3307710110.1016/j.jevs.2020.103206)
      Costa, M. C. et al. Changes in the equine fecal microbiota associated with the use of systemic antimicrobial drugs. BMC Vet. Res. 11, 1–12 (2015). (PMID: 10.1186/s12917-015-0335-7)
      Ilhan, Z. E., Marcus, A. K., Kang, D.-W., Rittmann, B. E. & Krajmalnik-Brown, R. pH-mediated microbial and metabolic interactions in fecal enrichment cultures. mSphere 2, e00047–17. (2017).
      Blikslager, A. T. Colic prevention to avoid colic surgery: A surgeon’s perspective. J. Equine Vet. Sci. 76, 1–5 (2019). (PMID: 3108474710.1016/j.jevs.2019.02.023)
      Van den Berg, M., Hoskin, S. O., Rogers, C. W. & Grinberg, A. Fecal pH and microbial populations in thoroughbred horses during transition from pasture to concentrate feeding. J. Equine Vet. Sci. 33, 215–222 (2013). (PMID: 10.1016/j.jevs.2012.06.004)
      Fleming, I., Defazio, J., Zaborina, O. & Alverdy, J. C. Critical illness and intestinal microflora: Ph as a surrogate marker. Diet Nutr. Crit. Care 1, 1–9 (2015).
      Wittebolle, L. et al. Initial community evenness favours functionality under selective stress. Nature 458, 623–626 (2009). (PMID: 1927067910.1038/nature07840)
      Kostic, A. D., Xavier, R. J. & Gevers, D. The microbiome in inflammatory bowel disease: Current status and the future ahead. Gastroenterology 146, 1489–1499 (2014). (PMID: 2456086910.1053/j.gastro.2014.02.009)
      Dalile, B., Van Oudenhove, L., Vervliet, B. & Verbeke, K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol. 16, 461–478 (2019). (PMID: 3112335510.1038/s41575-019-0157-3)
      Dinan, T. G. & Cryan, J. F. Microbes immunity and behavior: Psychoneuroimmunology meets the microbiome. Neuropsychopharmacology 42, 178–192 (2017). (PMID: 2731997210.1038/npp.2016.103)
      Vital, M. et al. Metagenomic insights into the degradation of resistant starch by human gut microbiota. Appl. Environ. Microbiol. 84, e01562 (2018). (PMID: 30266729623806510.1128/AEM.01562-18)
      Bailey, M. T. et al. Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain. Behav. Immun. 25, 397–407 (2011). (PMID: 2104078010.1016/j.bbi.2010.10.023)
      Louis, P. & Flint, H. J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 294, 1–8 (2009). (PMID: 1922257310.1111/j.1574-6968.2009.01514.x)
      Xie, X. et al. Persistence of cellulolytic bacteria fibrobacter and treponema after short-term corn stover-based dietary intervention reveals the potential to improve rumen fibrolytic function. Front. Microbiol. 9, 1363 (2018). (PMID: 29997589602951210.3389/fmicb.2018.01363)
      Burokas, A. et al. Targeting the microbiota-gut-brain axis: Prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol. Psychiatry 82, 472–487 (2017). (PMID: 2824201310.1016/j.biopsych.2016.12.031)
      van de Wouw, M. et al. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain–gut axis alterations. J. Physiol. 596, 4923–4944 (2018). (PMID: 30066368618704610.1113/JP276431)
      Lukić, I. et al. Antidepressants affect gut microbiota and Ruminococcus flavefaciens is able to abolish their effects on depressive-like behavior. Transl. Psychiatry 9, 133 (2019). (PMID: 30967529645656910.1038/s41398-019-0466-x)
      Julliand, V., De Vaux, A., Millet, L. & Fonty, G. Identification of Ruminococcus flavefaciens as the predominant cellulolytic bacterial species of the equine caecum. Appl. Environ. Microbiol. 65, 3738–3741 (1999). (PMID: 104270779156210.1128/AEM.65.8.3738-3741.1999)
      Flauger, B. & Krueger, K. Aggression level and enclosure size in horses ( Equus caballus ). Pferdeheilkunde 29, 495–504 (2013).
      Zaneveld, J. R., McMinds, R. & Thurber, R. V. Stress and stability: Applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2, 17121 (2017). (PMID: 2883657310.1038/nmicrobiol.2017.121)
      Martin-Rosset, W., Vermorel, M., Doreau, M., Tisserand, J. L. & Andrieu, J. The French horse feed evaluation systems and recommended allowances for energy and protein. Livest. Prod. Sci. 40, 37–56 (1994). (PMID: 10.1016/0301-6226(94)90264-X)
      Smith, B. L. et al. Effects of road transport on indices of stress in horses. Equine Vet. J. 28, 446–454 (1996). (PMID: 904949310.1111/j.2042-3306.1996.tb01616.x)
      Padalino, B. et al. Risk factors in equine transport-related health problems: A survey of the Australian equine industry. Equine Vet. J. 49, 507–511 (2017). (PMID: 2756458410.1111/evj.12631)
      Massacci, F. R. et al. Inter-breed diversity and temporal dynamics of the faecal microbiota in healthy horses. J. Anim. Breed. Genet. 00, 1–18 (2019).
      Plancade, S. et al. Unraveling the effects of the gut microbiota composition and function on horse endurance physiology. Sci. Rep. 9, 9620 (2019). (PMID: 31270376661014210.1038/s41598-019-46118-7)
      Destrez, A., Grimm, P., Cézilly, F. & Julliand, V. Changes of the hindgut microbiota due to high-starch diet can be associated with behavioral stress response in horses. Physiol. Behav. 149, 159–164 (2015). (PMID: 2604830610.1016/j.physbeh.2015.05.039)
      Willing, B. et al. Changes in faecal bacteria associated with concentrate and forage-only diets fed to horses in training. Equine Vet. J. 41, 908–914 (2009). (PMID: 2038399010.2746/042516409X447806)
      Daly, K. et al. Alterations in microbiota and fermentation products in equine large intestine in response to dietary variation and intestinal disease. Br. J. Nutr. 107, 989–995 (2012). (PMID: 2181611810.1017/S0007114511003825)
      Hansen, N. et al. High nutrient availability reduces the diversity and stability of the equine caecal microbiota. Microb. Ecol. Health Dis. 1, 1–8 (2015).
      Salem, S. E. et al. Variation in faecal microbiota in a group of horses managed at pasture over a 12-month period. Sci. Rep. 8, 1–10 (2018). (PMID: 10.1038/s41598-018-26930-3)
      Harlow, B. E., Donley, T. M., Lawrence, L. M. & Flythe, M. D. Effect of starch source (corn, oats or wheat) and concentration on fermentation by equine faecal microbiota in vitro. J. Appl. Microbiol. 119, 1234–1244 (2015). (PMID: 2625564510.1111/jam.12927)
      Respondek, F., Goachet, A. G. & Julliand, V. Effects of dietary short-chain fructooligosaccharides on the intestinal microflora of horses subjected to a sudden change in diet. J. Anim. Sci. 86, 316–323 (2008). (PMID: 1794016310.2527/jas.2006-782)
      Goodson, J., Tyznik, W. J., Cline, J. H. & Dehority, B. A. Effect of an abrupt diet change from hay to concentrate on microbial numbers and physical environment in the cecum of the pony. Appl. Environ. Microbiol. 54, 1946–1950 (1988). (PMID: 317820620278410.1128/aem.54.8.1946-1950.1988)
      Grimm, P., Philippeau, C. & Julliand, V. Faecal parameters as biomarkers of the equine hindgut microbial ecosystem under dietary change. Animal 11, 1136–1145 (2017). (PMID: 2806521110.1017/S1751731116002779)
      Jensen, R. B., Austbø, D., Blache, D., Bach Knudsen, K. E. & Tauson, A. H. The effect of feeding barley or hay alone or in combination with molassed sugar beet pulp on the metabolic responses in plasma and caecum of horses. Anim. Feed Sci. Technol. 214, 53–65 (2016).
      De Fombelle, A., Julliand, V., Drogoul, C. & Jacotot, E. Feeding and microbial disorders in horses: 1-effects of an abrupt incorporation of two levels of barley in a hay diet on microbial profile and activities. J. Equine Vet. Sci. 21, 439–445 (2001). (PMID: 10.1016/S0737-0806(01)70018-4)
      Muhonen, S. et al. Effects of crude protein intake from grass silage-only diets on the equine colon ecosystem after an abrupt feed change. J. Anim. Sci. 86, 3465–3472 (2008). (PMID: 1867673110.2527/jas.2007-0374)
      Mach, N. et al. The effects of weaning methods on gut microbiota composition and horse physiology. Front. Physiol. 8, 535 (2017). (PMID: 28790932552489810.3389/fphys.2017.00535)
      Clark, A. et al. Strongyle infection and gut microbiota: Profiling of resistant and susceptible horses over a grazing season. Front. Physiol. 9, 1–18 (2018). (PMID: 10.3389/fphys.2018.00272)
      Ericsson, A. C., Johnson, P. J., Lopes, M. A., Perry, S. C. & Lanter, H. R. A microbiological map of the healthy equine gastrointestinal tract. PLoS ONE 11, 1–17 (2016). (PMID: 10.1371/journal.pone.0166523)
      Reed, K. J. et al. Can fecal samples be used to inform about microbial communities of the equine hindgut?. J. Equine Vet. Sci. 52, 52–53 (2017). (PMID: 10.1016/j.jevs.2017.03.041)
      Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016). (PMID: 27214047492737710.1038/nmeth.3869)
      Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018). (PMID: 29773078595684310.1186/s40168-018-0470-z)
      McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013). (PMID: 23630581363253010.1371/journal.pone.0061217)
      Mcmurdie, P. J. & Holmes, S. Phyolseq: A Bioconductor package for handling and analysis of high-throughput phylogenetic sequence data. Pac. Symp. Biocomput. 0, 235–246 (2012).
      Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927 (2003). (PMID: 10.1111/j.1654-1103.2003.tb02228.x)
      Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015). (PMID: 10.18637/jss.v067.i01)
      Shields-Cutler, R. R., Al-Ghalith, G. A., Yassour, M. & Knights, D. SplinectomeR enables group comparisons in longitudinal microbiome studies. Front. Microbiol. 9, 785 (2018). (PMID: 29740416592479310.3389/fmicb.2018.00785)
      Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). (PMID: 25516281430204910.1186/s13059-014-0550-8)
      Clarke, K. R. & Ainsworth, M. A method of linking multivariate community structure to environmental variables. Mar. Ecol. Prog. Ser. 92, 205–219 (1993). (PMID: 10.3354/meps092205)
      Oksanen, J. et al. Package ‘vegan’: a community ecology package. 260 (2013). https://doi.org/10.1111/j.1654-1103.2003.tb02228.x.
      Blanchet, F. G., Legendre, P. & Borcard, D. Forward selection of explanatory variables. Ecology 89, 2623–2632 (2008). (PMID: 1883118310.1890/07-0986.1)
      Witten, D. M., Tibshirani, R. & Hastie, T. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10, 515–534 (2009). (PMID: 19377034269734610.1093/biostatistics/kxp008)
      Clark, A. & Mach, N. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: A systematic review for athletes. J. Int. Soc. Sports Nutr. 13, 43 (2016). (PMID: 27924137512194410.1186/s12970-016-0155-6)
    • Accession Number:
      0 (Butyrates)
      0 (RNA, Ribosomal, 16S)
    • Publication Date:
      Date Created: 20210304 Date Completed: 20211213 Latest Revision: 20230129
    • Publication Date:
      20250114
    • Accession Number:
      PMC7930273
    • Accession Number:
      10.1038/s41598-021-84497-y
    • Accession Number:
      33658551