Spatially Guided Distractor Suppression during Visual Search.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Society for Neuroscience Country of Publication: United States NLM ID: 8102140 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1529-2401 (Electronic) Linking ISSN: 02706474 NLM ISO Abbreviation: J Neurosci Subsets: MEDLINE
    • Publication Information:
      Publication: Washington, DC : Society for Neuroscience
      Original Publication: [Baltimore, Md.] : The Society, c1981-
    • Subject Terms:
    • Abstract:
      Past work has demonstrated that active suppression of salient distractors is a critical part of visual selection. Evidence for goal-driven suppression includes below-baseline visual encoding at the position of salient distractors (Gaspelin and Luck, 2018) and neural signals such as the distractor positivity (Pd) that track how many distractors are presented in a given hemifield (Feldmann-Wüstefeld and Vogel, 2019). One basic question regarding distractor suppression is whether it is inherently spatial or nonspatial in character. Indeed, past work has shown that distractors evoke both spatial (Theeuwes, 1992) and nonspatial forms of interference (Folk and Remington, 1998), motivating a direct examination of whether space is integral to goal-driven distractor suppression. Here, we use behavioral and EEG data from adult humans (male and female) to provide clear evidence for a spatial gradient of suppression surrounding salient singleton distractors. Replicating past work, both reaction time and neural indices of target selection improved monotonically as the distance between target and distractor increased. Importantly, these target selection effects were paralleled by a monotonic decline in the amplitude of the Pd, an electrophysiological index of distractor suppression. Moreover, multivariate analyses revealed spatially selective activity in the θ-band that tracked the position of the target and, critically, revealed suppressed activity at spatial channels centered on distractor positions. Thus, goal-driven selection of relevant over irrelevant information benefits from a spatial gradient of suppression surrounding salient distractors. SIGNIFICANCE STATEMENT Past work has shown that distractor suppression is an important part of goal-driven attentional selection, but has not yet revealed whether suppression is spatially directed. Using behavioral data, event-related potentials (ERPs) of the EEG signal [N2pc and distractor positivity (Pd) component], as well as a multivariate model of EEG data [channel tuning functions (CTF)], we show that suppression-related neural activity increases monotonically as the distance between targets and distractors decreases, and that spatially-selective activity in the θ-band reveals depressed activity in spatial channels that index distractor positions. Thus, we provide robust evidence for spatially-guided distractor suppression, a result that has important implications for models of goal-driven attentional control.
      (Copyright © 2021 the authors.)
    • Comments:
      Erratum in: J Neurosci. 2021 Aug 4;41(31):6794. (PMID: 34301832)
    • References:
      Psychophysiology. 2020 May;57(5):e13532. (PMID: 31953860)
      J Cogn Neurosci. 2020 Feb;32(2):272-282. (PMID: 31633465)
      J Exp Psychol Hum Percept Perform. 2007 Aug;33(4):764-87. (PMID: 17683227)
      Annu Rev Neurosci. 1995;18:193-222. (PMID: 7605061)
      Atten Percept Psychophys. 2010 Feb;72(2):326-41. (PMID: 20139449)
      J Exp Psychol Hum Percept Perform. 2009 Oct;35(5):1316-28. (PMID: 19803639)
      J Exp Psychol Hum Percept Perform. 1998 Jun;24(3):847-58. (PMID: 9627420)
      J Exp Psychol Hum Percept Perform. 2014 Aug;40(4):1465-78. (PMID: 24730745)
      J Exp Psychol Hum Percept Perform. 2004 Feb;30(1):56-78. (PMID: 14769068)
      Psychophysiology. 2013 May;50(5):422-30. (PMID: 23418888)
      Percept Psychophys. 1991 May;49(5):473-80. (PMID: 2057313)
      Vision Res. 1998 Mar;38(5):669-89. (PMID: 9604099)
      Neuropsychologia. 2012 Aug;50(10):2442-53. (PMID: 22743179)
      Psychophysiology. 2014 Jul;51(7):685-96. (PMID: 24707976)
      Nat Rev Neurosci. 2001 Mar;2(3):194-203. (PMID: 11256080)
      Electroencephalogr Clin Neurophysiol. 1996 Sep;99(3):225-34. (PMID: 8862112)
      Cereb Cortex. 2009 Jan;19(1):106-14. (PMID: 18515299)
      Percept Psychophys. 2000 Oct;62(7):1485-93. (PMID: 11143458)
      J Cogn Neurosci. 2004 Jun;16(5):751-9. (PMID: 15200703)
      Psychol Sci. 2019 Dec;30(12):1724-1732. (PMID: 31693453)
      J Cogn Neurosci. 2009 Apr;21(4):760-75. (PMID: 18564048)
      J Exp Psychol Hum Percept Perform. 2003 Feb;29(1):121-38. (PMID: 12669752)
      Cogn Psychol. 1997 Jun;33(1):64-87. (PMID: 9212722)
      Curr Opin Psychol. 2019 Oct;29:160-167. (PMID: 30954779)
      J Exp Psychol Hum Percept Perform. 1983 Aug;9(4):510-22. (PMID: 6224889)
      J Cogn Neurosci. 2020 Feb;32(2):367-377. (PMID: 31702429)
      Psychon Bull Rev. 2004 Jun;11(3):551-4. (PMID: 15376809)
      J Exp Psychol Hum Percept Perform. 2004 Dec;30(6):1019-31. (PMID: 15584812)
      Trends Cogn Sci. 2012 Dec;16(12):576-9. (PMID: 23141429)
      J Cogn Neurosci. 2011 Mar;23(3):645-60. (PMID: 19929330)
      Sci Rep. 2017 May 15;7(1):1886. (PMID: 28507285)
      Neuroimage. 2017 May 15;152:171-183. (PMID: 28274832)
      J Cogn Neurosci. 2018 Sep;30(9):1265-1280. (PMID: 29762104)
      J Exp Psychol Hum Percept Perform. 1999 Jun;25(3):661-76. (PMID: 10385983)
      Neuroimage. 2017 Feb 15;147:880-894. (PMID: 27836709)
      Atten Percept Psychophys. 2011 Oct;73(7):2053-64. (PMID: 21739337)
      Neuroscience. 2007 Jun 8;146(4):1435-44. (PMID: 17459593)
      Cereb Cortex. 2019 Feb 1;29(2):529-543. (PMID: 29365078)
      Acta Psychol (Amst). 2013 Sep;144(1):61-72. (PMID: 23747508)
      J Neurophysiol. 2016 Jan 1;115(1):168-77. (PMID: 26467522)
      Trends Cogn Sci. 2006 Aug;10(8):382-90. (PMID: 16843702)
      Psychon Bull Rev. 2013 Apr;20(2):296-301. (PMID: 23254574)
      Psychophysiology. 2012 Apr;49(4):504-9. (PMID: 22176697)
      J Exp Psychol Hum Percept Perform. 1994 Oct;20(5):1000-14. (PMID: 7964526)
      Psychol Rev. 2020 Nov;127(6):1163-1198. (PMID: 32772529)
      Atten Percept Psychophys. 2010 Aug;72(6):1455-70. (PMID: 20675793)
      Psychon Bull Rev. 2006 Feb;13(1):132-8. (PMID: 16724780)
      Percept Psychophys. 1992 Jun;51(6):599-606. (PMID: 1620571)
      Neuron. 2015 Aug 19;87(4):893-905. (PMID: 26257053)
      J Exp Psychol Hum Percept Perform. 2018 Mar;44(3):433-451. (PMID: 28816482)
      J Neurosci. 2014 Apr 16;34(16):5658-66. (PMID: 24741056)
      Psychophysiology. 2017 Dec;54(12):1826-1838. (PMID: 28752665)
      Psychophysiology. 2015 Nov;52(11):1483-97. (PMID: 26338030)
      Percept Psychophys. 1983 Jun;33(6):527-32. (PMID: 6622188)
      J Vis. 2013 May 06;13(3):. (PMID: 23650629)
      J Exp Psychol Hum Percept Perform. 2002 Dec;28(6):1303-22. (PMID: 12542129)
      Curr Biol. 2017 Oct 23;27(20):3216-3223.e6. (PMID: 29033335)
      Trends Cogn Sci. 2012 Aug;16(8):437-43. (PMID: 22795563)
      Acta Psychol (Amst). 2010 Oct;135(2):77-99. (PMID: 20507828)
      Psychol Sci. 2015 Nov;26(11):1740-50. (PMID: 26420441)
      Eur J Neurosci. 2005 Dec;22(11):2917-26. (PMID: 16324126)
      Neuroimage. 2017 Aug 1;156:166-173. (PMID: 28502842)
    • Grant Information:
      R01 MH087214 United States MH NIMH NIH HHS
    • Contributed Indexing:
      Keywords: EEG; Pd; attentional capture; multivariate models; suppression; visual attention
    • Publication Date:
      Date Created: 20210303 Date Completed: 20210817 Latest Revision: 20240331
    • Publication Date:
      20240331
    • Accession Number:
      PMC8026355
    • Accession Number:
      10.1523/JNEUROSCI.2418-20.2021
    • Accession Number:
      33653697