Old Friends with Unexploited Perspectives: Current Advances in Mesenchymal Stem Cell-Based Therapies in Asthma.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Science+Business Media Country of Publication: United States NLM ID: 101752767 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2629-3277 (Electronic) Linking ISSN: 26293277 NLM ISO Abbreviation: Stem Cell Rev Rep Subsets: MEDLINE
    • Publication Information:
      Publication: 2011- : [New York, NY] : Springer Science+Business Media
      Original Publication: [Totowa, N.J.] : Humana Press, [2009]-
    • Subject Terms:
    • Abstract:
      Mesenchymal stem cells (MSCs) have a great regenerative and immunomodulatory potential that was successfully tested in numerous pre-clinical and clinical studies of various degenerative, hematological and inflammatory disorders. Over the last few decades, substantial immunoregulatory effects of MSC treatment were widely observed in different experimental models of asthma. Therefore, it is tempting to speculate that stem cell-based treatment could become an attractive means to better suppress asthmatic airway inflammation, especially in subjects resistant to currently available anti-inflammatory therapies. In this review, we discuss mechanisms accounting for potent immunosuppressive properties of MSCs and the rationale for their use in asthma. We describe in detail an intriguing interplay between MSCs and other crucial players in the immune system as well as lung microenvironment. Finally, we reveal the potential of MSCs in maintaining airway epithelial integrity and alleviating lung remodeling.
      (© 2021. The Author(s).)
    • References:
      Trounson, A., & McDonald, C. (2015). Stem cell therapies in clinical trials: Progress and challenges. Cell Stem Cell, 17(1), 11–22. https://doi.org/10.1016/j.stem.2015.06.007 . (PMID: 10.1016/j.stem.2015.06.00726140604)
      Rezania, A., Bruin, J. E., Arora, P., Rubin, A., Batushansky, I., Asadi, A., O'Dwyer, S., Quiskamp, N., Mojibian, M., Albrecht, T., Yang, Y. H. C., Johnson, J. D., & Kieffer, T. J. (2014). Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nature Biotechnology, 32(11), 1121–1133. https://doi.org/10.1038/nbt.3033 . (PMID: 10.1038/nbt.303325211370)
      Ratajczak, M. Z., Kucia, M., Jadczyk, T., Greco, N. J., Wojakowski, W., Tendera, M., & Ratajczak, J. (2012). Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: Can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia, 26(6), 1166–1173. https://doi.org/10.1038/leu.2011.389 . (PMID: 10.1038/leu.2011.38922182853)
      Parmar, M., Grealish, S., & Henchcliffe, C. (2020). The future of stem cell therapies for Parkinson disease. Nature Reviews. Neuroscience, 21(2), 103–115. https://doi.org/10.1038/s41583-019-0257-7 . (PMID: 10.1038/s41583-019-0257-731907406)
      Madl, C. M., Heilshorn, S. C., & Blau, H. M. (2018). Bioengineering strategies to accelerate stem cell therapeutics. Nature, 557(7705), 335–342. https://doi.org/10.1038/s41586-018-0089-z . (PMID: 10.1038/s41586-018-0089-z297696656773426)
      Guha, P., Morgan, J. W., Mostoslavsky, G., Rodrigues, N. P., & Boyd, A. S. (2013). Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell, 12(4), 407–412. https://doi.org/10.1016/j.stem.2013.01.006 . (PMID: 10.1016/j.stem.2013.01.00623352605)
      Itakura, G., Kawabata, S., Ando, M., Nishiyama, Y., Sugai, K., Ozaki, M., Iida, T., Ookubo, T., Kojima, K., Kashiwagi, R., Yasutake, K., Nakauchi, H., Miyoshi, H., Nagoshi, N., Kohyama, J., Iwanami, A., Matsumoto, M., Nakamura, M., & Okano, H. (2017). Fail-safe system against potential Tumorigenicity after transplantation of iPSC derivatives. Stem Cell Reports, 8(3), 673–684. https://doi.org/10.1016/j.stemcr.2017.02.003 . (PMID: 10.1016/j.stemcr.2017.02.003282625445355810)
      Zhao, T., Zhang, Z. N., Rong, Z., & Xu, Y. (2011). Immunogenicity of induced pluripotent stem cells. Nature, 474(7350), 212–215. https://doi.org/10.1038/nature10135 . (PMID: 10.1038/nature1013521572395)
      Araki, R., Uda, M., Hoki, Y., Sunayama, M., Nakamura, M., Ando, S., Sugiura, M., Ideno, H., Shimada, A., Nifuji, A., & Abe, M. (2013). Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature, 494(7435), 100–104. https://doi.org/10.1038/nature11807 . (PMID: 10.1038/nature1180723302801)
      Huang, X. P., Sun, Z., Miyagi, Y., McDonald Kinkaid, H., Zhang, L., Weisel, R. D., & Li, R. K. (2010). Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation, 122(23), 2419–2429. https://doi.org/10.1161/CIRCULATIONAHA.110.955971 . (PMID: 10.1161/CIRCULATIONAHA.110.95597121098445)
      Rama, P., Matuska, S., Paganoni, G., Spinelli, A., De Luca, M., & Pellegrini, G. (2010). Limbal stem-cell therapy and long-term corneal regeneration. The New England Journal of Medicine, 363(2), 147–155. https://doi.org/10.1056/NEJMoa0905955 . (PMID: 10.1056/NEJMoa090595520573916)
      Lee, J. S., Hong, J. M., Moon, G. J., Lee, P. H., Ahn, Y. H., Bang, O. Y., & STARTING collaborators. (2010). A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells, 28(6), 1099–1106. https://doi.org/10.1002/stem.430 . (PMID: 10.1002/stem.43020506226)
      Martin, R. M., Fowler, J. L., Cromer, M. K., Lesch, B. J., Ponce, E., Uchida, N., Nishimura, T., Porteus, M. H., & Loh, K. M. (2020). Improving the safety of human pluripotent stem cell therapies using genome-edited orthogonal safeguards. Nature Communications, 11(1), 2713. https://doi.org/10.1038/s41467-020-16455-7 . (PMID: 10.1038/s41467-020-16455-7324831277264334)
      Approved Cellular and Gene Therapy Products (2020). https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products . Accessed December 9, 2020.
      First stem-cell therapy recommended for approval in EU (2014). https://www.ema.europa.eu/en/news/first-stem-cell-therapy-recommended-approval-eu . Accessed December 9, 2020.
      Martin, I., Galipeau, J., Kessler, C., Le Blanc, K., & Dazzi, F. (2019). Challenges for mesenchymal stromal cell therapies. Science Translational Medicine, 11(480), eaat2189. https://doi.org/10.1126/scitranslmed.aat2189 . (PMID: 10.1126/scitranslmed.aat218930787168)
      De Luca, M., Aiuti, A., Cossu, G., Parmar, M., Pellegrini, G., & Robey, P. G. (2019). Advances in stem cell research and therapeutic development. Nature Cell Biology, 21(7), 801–811. https://doi.org/10.1038/s41556-019-0344-z . (PMID: 10.1038/s41556-019-0344-z31209293)
      Kay, A. G., Long, G., Tyler, G., Stefan, A., Broadfoot, S. J., Piccinini, A. M., Middleton, J., & Kehoe, O. (2017). Mesenchymal stem cell-conditioned medium reduces disease severity and immune responses in inflammatory arthritis. Scientific Reports, 7(1), 18019. https://doi.org/10.1038/s41598-017-18144-w . (PMID: 10.1038/s41598-017-18144-w292698855740178)
      Murphy, K. C., Whitehead, J., Falahee, P. C., Zhou, D., Simon, S. I., & Leach, J. K. (2017). Multifactorial experimental design to optimize the anti-inflammatory and Proangiogenic potential of Mesenchymal stem cell spheroids. Stem Cells, 35(6), 1493–1504. https://doi.org/10.1002/stem.2606 . (PMID: 10.1002/stem.2606282766025446296)
      Redondo-Castro, E., Cunningham, C., Miller, J., Martuscelli, L., Aoulad-Ali, S., Rothwell, N. J., Kielty, C. M., Allan, S. M., & Pinteaux, E. (2017). Interleukin-1 primes human mesenchymal stem cells towards an anti-inflammatory and pro-trophic phenotype in vitro. Stem Cell Research & Therapy, 8(1), 79. https://doi.org/10.1186/s13287-017-0531-4 . (PMID: 10.1186/s13287-017-0531-4)
      Luger, D., Lipinski, M. J., Westman, P. C., Glover, D. K., Dimastromatteo, J., Frias, J. C., Albelda, M. T., Sikora, S., Kharazi, A., Vertelov, G., Waksman, R., & Epstein, S. E. (2017). Intravenously delivered Mesenchymal stem cells: Systemic anti-inflammatory effects improve left ventricular dysfunction in acute myocardial infarction and ischemic cardiomyopathy. Circulation Research, 120(10), 1598–1613. https://doi.org/10.1161/CIRCRESAHA.117.310599 . (PMID: 10.1161/CIRCRESAHA.117.31059928232595)
      Park, S. R., Kim, J. W., Jun, H. S., Roh, J. Y., Lee, H. Y., & Hong, I. S. (2018). Stem cell Secretome and its effect on Cellular mechanisms relevant to wound healing. Molecular Therapy, 26(2), 606–617. https://doi.org/10.1016/j.ymthe.2017.09.023 . (PMID: 10.1016/j.ymthe.2017.09.02329066165)
      Tachibana, A., Santoso, M. R., Mahmoudi, M., Shukla, P., Wang, L., Bennett, M., Goldstone, A. B., Wang, M., Fukushi, M., Ebert, A. D., Woo, Y. J., Rulifson, E., & Yang, P. C. (2017). Paracrine effects of the pluripotent stem cell-derived cardiac Myocytes salvage the injured myocardium. Circulation Research, 121(6), e22–e36. https://doi.org/10.1161/CIRCRESAHA.117.310803 . (PMID: 10.1161/CIRCRESAHA.117.310803287438045783162)
      Li, X., Xie, X., Lian, W., Shi, R., Han, S., Zhang, H., Lu, L., & Li, M. (2018). Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Experimental & Molecular Medicine, 50(4), 29. https://doi.org/10.1038/s12276-018-0058-5 . (PMID: 10.1038/s12276-018-0058-5)
      de Mendonça, L., Felix, N. S., Blanco, N. G., Da Silva, J. S., Ferreira, T. P., Abreu, S. C., et al. (2017). Mesenchymal stromal cell therapy reduces lung inflammation and vascular remodeling and improves hemodynamics in experimental pulmonary arterial hypertension. Stem Cell Research & Therapy, 8(1), 220. https://doi.org/10.1186/s13287-017-0669-0 . (PMID: 10.1186/s13287-017-0669-0)
      Uemura, R., Xu, M., Ahmad, N., & Ashraf, M. (2006). Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circulation Research, 98(11), 1414–1421. https://doi.org/10.1161/01.RES.0000225952.61196.39 . (PMID: 10.1161/01.RES.0000225952.61196.3916690882)
      Lan, Y. W., Choo, K. B., Chen, C. M., Hung, T. H., Chen, Y. B., Hsieh, C. H., Kuo, H. P., & Chong, K. Y. (2015). Hypoxia-preconditioned mesenchymal stem cells attenuate bleomycin-induced pulmonary fibrosis. Stem Cell Research & Therapy, 6, 97. https://doi.org/10.1186/s13287-015-0081-6 . (PMID: 10.1186/s13287-015-0081-6)
      Horton, J. A., Hudak, K. E., Chung, E. J., White, A. O., Scroggins, B. T., Burkeen, J. F., & Citrin, D. E. (2013). Mesenchymal stem cells inhibit cutaneous radiation-induced fibrosis by suppressing chronic inflammation. Stem Cells, 31(10), 2231–2241. https://doi.org/10.1002/stem.1483 . (PMID: 10.1002/stem.1483238976777511998)
      Wilson, J. G., Liu, K. D., Zhuo, H., Caballero, L., McMillan, M., Fang, X., Cosgrove, K., Vojnik, R., Calfee, C. S., Lee, J. W., Rogers, A. J., Levitt, J., Wiener-Kronish, J., Bajwa, E. K., Leavitt, A., McKenna, D., Thompson, B. T., & Matthay, M. A. (2015). Mesenchymal stem (stromal) cells for treatment of ARDS: A phase 1 clinical trial. The Lancet Respiratory Medicine, 3(1), 24–32. https://doi.org/10.1016/S2213-2600(14)70291-7 . (PMID: 10.1016/S2213-2600(14)70291-725529339)
      Glassberg, M. K., Minkiewicz, J., Toonkel, R. L., Simonet, E. S., Rubio, G. A., DiFede, D., Shafazand, S., Khan, A., Pujol, M. V., LaRussa, V. F., Lancaster, L. H., Rosen, G. D., Fishman, J., Mageto, Y. N., Mendizabal, A., & Hare, J. M. (2017). Allogeneic human Mesenchymal stem cells in patients with idiopathic pulmonary fibrosis via intravenous delivery (AETHER): A phase I safety clinical trial. Chest, 151(5), 971–981. https://doi.org/10.1016/j.chest.2016.10.061 . (PMID: 10.1016/j.chest.2016.10.06127890713)
      Gu, W., Song, L., Li, X. M., Wang, D., Guo, X. J., & Xu, W. G. (2015). Mesenchymal stem cells alleviate airway inflammation and emphysema in COPD through down-regulation of cyclooxygenase-2 via p38 and ERK MAPK pathways. Scientific Reports, 5, 8733. https://doi.org/10.1038/srep08733 . (PMID: 10.1038/srep08733257364344348625)
      Li, X., Michaeloudes, C., Zhang, Y., Wiegman, C. H., Adcock, I. M., Lian, Q., et al. (2018). Mesenchymal stem cells alleviate oxidative stress-induced mitochondrial dysfunction in the airways. The Journal of Allergy and Clinical Immunology, 141(5), 1634–1645.e1635. https://doi.org/10.1016/j.jaci.2017.08.017 . (PMID: 10.1016/j.jaci.2017.08.01728911970)
      Hao, Q., Gudapati, V., Monsel, A., Park, J. H., Hu, S., Kato, H., Lee, J. H., Zhou, L., He, H., & Lee, J. W. (2019). Mesenchymal stem cell-derived extracellular vesicles decrease lung injury in mice. Journal of Immunology, 203(7), 1961–1972. https://doi.org/10.4049/jimmunol.1801534 . (PMID: 10.4049/jimmunol.1801534)
      Ahn, S. Y., Park, W. S., Kim, Y. E., Sung, D. K., Sung, S. I., Ahn, J. Y., & Chang, Y. S. (2018). Vascular endothelial growth factor mediates the therapeutic efficacy of mesenchymal stem cell-derived extracellular vesicles against neonatal hyperoxic lung injury. Experimental & Molecular Medicine, 50(4), 26. https://doi.org/10.1038/s12276-018-0055-8 . (PMID: 10.1038/s12276-018-0055-8)
      Mariñas-Pardo, L., Mirones, I., Amor-Carro, O., Fraga-Iriso, R., Lema-Costa, B., Cubillo, I., Rodríguez Milla, M. Á., García-Castro, J., & Ramos-Barbón, D. (2014). Mesenchymal stem cells regulate airway contractile tissue remodeling in murine experimental asthma. Allergy, 69(6), 730–740. https://doi.org/10.1111/all.12392 . (PMID: 10.1111/all.1239224750069)
      Kapoor, S., Patel, S. A., Kartan, S., Axelrod, D., Capitle, E., & Rameshwar, P. (2012). Tolerance-like mediated suppression by mesenchymal stem cells in patients with dust mite allergy-induced asthma. The Journal of Allergy and Clinical Immunology, 129(4), 1094–1101. https://doi.org/10.1016/j.jaci.2011.10.048 . (PMID: 10.1016/j.jaci.2011.10.04822196773)
      Akdis, C. A. (2012). Therapies for allergic inflammation: Refining strategies to induce tolerance. Nature Medicine, 18(5), 736–749. https://doi.org/10.1038/nm.2754 . (PMID: 10.1038/nm.275422561837)
      Barnes, P. J. (2012). Severe asthma: Advances in current management and future therapy. The Journal of Allergy and Clinical Immunology, 129(1), 48–59. https://doi.org/10.1016/j.jaci.2011.11.006 . (PMID: 10.1016/j.jaci.2011.11.00622196524)
      Corren, J. (2019). New targeted therapies for uncontrolled asthma. The Journal of Allergy and Clinical Immunology. In Practice, 7(5), 1394–1403. https://doi.org/10.1016/j.jaip.2019.03.022 . (PMID: 10.1016/j.jaip.2019.03.02231076057)
      Agache, I., Rocha, C., Beltran, J., Song, Y., Posso, M., Solà, I., Alonso-Coello, P., Akdis, C., Akdis, M., Canonica, G. W., Casale, T., Chivato, T., Corren, J., del Giacco, S., Eiwegger, T., Firinu, D., Gern, J. E., Hamelmann, E., Hanania, N., Mäkelä, M., Martín, I. H., Nair, P., O'Mahony, L., Papadopoulos, N. G., Papi, A., Park, H. S., Pérez de Llano, L., Quirce, S., Sastre, J., Shamji, M., Schwarze, J., Canelo-Aybar, C., Palomares, O., & Jutel, M. (2020). Efficacy and safety of treatment with biologicals (benralizumab, dupilumab and omalizumab) for severe allergic asthma: A systematic review for the EAACI guidelines - recommendations on the use of biologicals in severe asthma. Allergy, 75(5), 1043–1057. https://doi.org/10.1111/all.14235 . (PMID: 10.1111/all.1423532064642)
      Agache, I., Lau, S., Akdis, C. A., Smolinska, S., Bonini, M., Cavkaytar, O., Flood, B., Gajdanowicz, P., Izuhara, K., Kalayci, O., Mosges, R., Palomares, O., Papadopoulos, N. G., Sokolowska, M., Angier, E., Fernandez-Rivas, M., Pajno, G., Pfaar, O., Roberts, G. C., Ryan, D., Sturm, G. J., Ree, R., Varga, E. M., Wijk, R. G., Yepes-Nuñez, J. J., & Jutel, M. (2019). EAACI guidelines on allergen immunotherapy: House dust mite-driven allergic asthma. Allergy, 74(5), 855–873. https://doi.org/10.1111/all.13749 . (PMID: 10.1111/all.1374931095767)
      Corren, J., Castro, M., O'Riordan, T., Hanania, N. A., Pavord, I. D., Quirce, S., Chipps, B. E., Wenzel, S. E., Thangavelu, K., Rice, M. S., Harel, S., Jagerschmidt, A., Khan, A. H., Kamat, S., Maroni, J., Rowe, P., Lu, Y., Amin, N., Pirozzi, G., Ruddy, M., Graham, N. M. H., & Teper, A. (2020). Dupilumab efficacy in patients with uncontrolled, moderate-to-severe allergic asthma. The Journal of Allergy and Clinical Immunology. In Practice, 8(2), 516–526. https://doi.org/10.1016/j.jaip.2019.08.050 . (PMID: 10.1016/j.jaip.2019.08.05031521831)
      Caplan, A. I. (1991). Mesenchymal stem cells. Journal of Orthopaedic Research, 9(5), 641–650. https://doi.org/10.1002/jor.1100090504 . (PMID: 10.1002/jor.11000905041870029)
      Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., & Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147. https://doi.org/10.1126/science.284.5411.143 . (PMID: 10.1126/science.284.5411.14310102814)
      Caplan, A. I. (2017). Mesenchymal stem cells: Time to change the name! Stem Cells Translational Medicine, 6(6), 1445–1451. https://doi.org/10.1002/sctm.17-0051 . (PMID: 10.1002/sctm.17-0051284522045689741)
      Han, S. M., Han, S. H., Coh, Y. R., Jang, G., Chan Ra, J., Kang, S. K., Lee, H. W., & Youn, H. Y. (2014). Enhanced proliferation and differentiation of Oct4- and Sox2-overexpressing human adipose tissue mesenchymal stem cells. Experimental & Molecular Medicine, 46, e101. https://doi.org/10.1038/emm.2014.28 . (PMID: 10.1038/emm.2014.28)
      Krampera, M., Glennie, S., Dyson, J., Scott, D., Laylor, R., Simpson, E., & Dazzi, F. (2003). Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood, 101(9), 3722–3729. https://doi.org/10.1182/blood-2002-07-2104 . (PMID: 10.1182/blood-2002-07-210412506037)
      Glennie, S., Soeiro, I., Dyson, P. J., Lam, E. W., & Dazzi, F. (2005). Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 105(7), 2821–2827. https://doi.org/10.1182/blood-2004-09-3696 . (PMID: 10.1182/blood-2004-09-369615591115)
      Wang, H. S., Hung, S. C., Peng, S. T., Huang, C. C., Wei, H. M., Guo, Y. J., Fu, Y. S., Lai, M. C., & Chen, C. C. (2004). Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells, 22(7), 1330–1337. https://doi.org/10.1634/stemcells.2004-0013 . (PMID: 10.1634/stemcells.2004-001315579650)
      Lee, O. K., Kuo, T. K., Chen, W. M., Lee, K. D., Hsieh, S. L., & Chen, T. H. (2004). Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood, 103(5), 1669–1675. https://doi.org/10.1182/blood-2003-05-1670 . (PMID: 10.1182/blood-2003-05-167014576065)
      Bieback, K., Kern, S., Klüter, H., & Eichler, H. (2004). Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells, 22(4), 625–634. https://doi.org/10.1634/stemcells.22-4-625 . (PMID: 10.1634/stemcells.22-4-62515277708)
      Roubelakis, M. G., Pappa, K. I., Bitsika, V., Zagoura, D., Vlahou, A., Papadaki, H. A., Antsaklis, A., & Anagnou, N. P. (2007). Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: Comparison to bone marrow mesenchymal stem cells. Stem Cells and Development, 16(6), 931–952. https://doi.org/10.1089/scd.2007.0036 . (PMID: 10.1089/scd.2007.003618047393)
      Savickiene, J., Treigyte, G., Baronaite, S., Valiuliene, G., Kaupinis, A., Valius, M., Arlauskiene, A., & Navakauskiene, R. (2015). Human amniotic fluid Mesenchymal stem cells from second- and third-trimester amniocentesis: Differentiation potential, molecular signature, and proteome analysis. Stem Cells International, 2015, 319238–319215. https://doi.org/10.1155/2015/319238 . (PMID: 10.1155/2015/319238263514624553339)
      Tsai, M. S., Hwang, S. M., Chen, K. D., Lee, Y. S., Hsu, L. W., Chang, Y. J., Wang, C. N., Peng, H. H., Chang, Y. L., Chao, A. S., Chang, S. D., Lee, K. D., Wang, T. H., Wang, H. S., & Soong, Y. K. (2007). Functional network analysis of the transcriptomes of mesenchymal stem cells derived from amniotic fluid, amniotic membrane, cord blood, and bone marrow. Stem Cells, 25(10), 2511–2523. https://doi.org/10.1634/stemcells.2007-0023 . (PMID: 10.1634/stemcells.2007-002317556597)
      Shi, S., & Gronthos, S. (2003). Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. Journal of Bone and Mineral Research, 18(4), 696–704. https://doi.org/10.1359/jbmr.2003.18.4.696 . (PMID: 10.1359/jbmr.2003.18.4.69612674330)
      Schüring, A. N., Schulte, N., Kelsch, R., Röpke, A., Kiesel, L., & Götte, M. (2011). Characterization of endometrial mesenchymal stem-like cells obtained by endometrial biopsy during routine diagnostics. Fertility and Sterility, 95(1), 423–426. https://doi.org/10.1016/j.fertnstert.2010.08.035 . (PMID: 10.1016/j.fertnstert.2010.08.03520864098)
      Meng, X., Ichim, T. E., Zhong, J., Rogers, A., Yin, Z., Jackson, J., Wang, H., Ge, W., Bogin, V., Chan, K. W., Thébaud, B., & Riordan, N. H. (2007). Endometrial regenerative cells: a novel stem cell population. Journal of Translational Medicine, 5, 57. https://doi.org/10.1186/1479-5876-5-57 . (PMID: 10.1186/1479-5876-5-57180054052212625)
      Tondreau, T., Meuleman, N., Delforge, A., Dejeneffe, M., Leroy, R., Massy, M., Mortier, C., Bron, D., & Lagneaux, L. (2005). Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: Proliferation, Oct4 expression, and plasticity. Stem Cells, 23(8), 1105–1112. https://doi.org/10.1634/stemcells.2004-0330 . (PMID: 10.1634/stemcells.2004-033015955825)
      Wang, S. J., Jiang, D., Zhang, Z. Z., Huang, A. B., Qi, Y. S., Wang, H. J., Zhang, J. Y., & Yu, J. K. (2016). Chondrogenic potential of peripheral blood derived Mesenchymal stem cells seeded on demineralized Cancellous bone scaffolds. Scientific Reports, 6, 36400. https://doi.org/10.1038/srep36400 . (PMID: 10.1038/srep36400278218645099580)
      Xu, J., Su, Y., Hu, L., Cain, A., Gu, Y., Liu, B., Wu, R., Wang, S., & Wang, H. (2018). Effect of bone morphogenetic protein 6 on Immunomodulatory functions of salivary gland-derived Mesenchymal stem cells in Sjögren's syndrome. Stem Cells and Development, 27(22), 1540–1548. https://doi.org/10.1089/scd.2017.0161 . (PMID: 10.1089/scd.2017.0161301323836425984)
      de Sousa, E. B., Casado, P. L., Moura Neto, V., Duarte, M. E., & Aguiar, D. P. (2014). Synovial fluid and synovial membrane mesenchymal stem cells: Latest discoveries and therapeutic perspectives. Stem Cell Research & Therapy, 5(5), 112. https://doi.org/10.1186/scrt501 . (PMID: 10.1186/scrt501)
      Liu, T. M., Martina, M., Hutmacher, D. W., Hui, J. H., Lee, E. H., & Lim, B. (2007). Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells, 25(3), 750–760. https://doi.org/10.1634/stemcells.2006-0394 . (PMID: 10.1634/stemcells.2006-039417095706)
      Viswanathan, S., Shi, Y., Galipeau, J., Krampera, M., Leblanc, K., Martin, I., Nolta, J., Phinney, D. G., & Sensebe, L. (2019). Mesenchymal stem versus stromal cells: International Society for Cell & gene therapy (ISCT®) Mesenchymal stromal cell committee position statement on nomenclature. Cytotherapy, 21(10), 1019–1024. https://doi.org/10.1016/j.jcyt.2019.08.002 . (PMID: 10.1016/j.jcyt.2019.08.00231526643)
      Mattar, P., & Bieback, K. (2015). Comparing the Immunomodulatory properties of bone marrow, adipose tissue, and birth-associated tissue Mesenchymal stromal cells. Frontiers in Immunology, 6, 560. https://doi.org/10.3389/fimmu.2015.00560 . (PMID: 10.3389/fimmu.2015.00560265791334630659)
      Ribeiro, A., Laranjeira, P., Mendes, S., Velada, I., Leite, C., Andrade, P., Santos, F., Henriques, A., Grãos, M., Cardoso, C. M. P., Martinho, A., Pais, M. L., da Silva, C., Cabral, J., Trindade, H., & Paiva, A. (2013). Mesenchymal stem cells from umbilical cord matrix, adipose tissue and bone marrow exhibit different capability to suppress peripheral blood B, natural killer and T cells. Stem Cell Research & Therapy, 4(5), 125. https://doi.org/10.1186/scrt336 . (PMID: 10.1186/scrt336)
      Najar, M., Raicevic, G., Boufker, H. I., Fayyad Kazan, H., De Bruyn, C., Meuleman, N., et al. (2010). Mesenchymal stromal cells use PGE2 to modulate activation and proliferation of lymphocyte subsets: Combined comparison of adipose tissue, Wharton's jelly and bone marrow sources. Cellular Immunology, 264(2), 171–179. https://doi.org/10.1016/j.cellimm.2010.06.006 . (PMID: 10.1016/j.cellimm.2010.06.00620619400)
      Ivanova-Todorova, E., Bochev, I., Mourdjeva, M., Dimitrov, R., Bukarev, D., Kyurkchiev, S., Tivchev, P., Altunkova, I., & Kyurkchiev, D. S. (2009). Adipose tissue-derived mesenchymal stem cells are more potent suppressors of dendritic cells differentiation compared to bone marrow-derived mesenchymal stem cells. Immunology Letters, 126(1–2), 37–42. https://doi.org/10.1016/j.imlet.2009.07.010 . (PMID: 10.1016/j.imlet.2009.07.01019647021)
      Jin, H. J., Bae, Y. K., Kim, M., Kwon, S. J., Jeon, H. B., Choi, S. J., et al. (2013). Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. International Journal of Molecular Sciences, 14(9), 17986–18001. https://doi.org/10.3390/ijms140917986 . (PMID: 10.3390/ijms140917986240058623794764)
      Li, X., Bai, J., Ji, X., Li, R., Xuan, Y., & Wang, Y. (2014). Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation. International Journal of Molecular Medicine, 34(3), 695–704. https://doi.org/10.3892/ijmm.2014.1821 . (PMID: 10.3892/ijmm.2014.1821249704924121354)
      Adams, T. S., Schupp, J. C., Poli, S., Ayaub, E. A., Neumark, N., Ahangari, F., et al. (2020). Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Science Advances, 6(28), eaba1983. https://doi.org/10.1126/sciadv.aba1983 . (PMID: 10.1126/sciadv.aba1983328325997439502)
      Habermann, A. C., Gutierrez, A. J., Bui, L. T., Yahn, S. L., Winters, N. I., Calvi, C. L., et al. (2020). Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Science Advances, 6(28), eaba1972. https://doi.org/10.1126/sciadv.aba1972 . (PMID: 10.1126/sciadv.aba1972328325987439444)
      Wang, L., Shi, M., Tong, L., Wang, J., Ji, S., Bi, J., Chen, C., Jiang, J., Bai, C., Zhou, J., & Song, Y. (2019). Lung-resident Mesenchymal stem cells promote repair of LPS-induced acute lung injury via regulating the balance of regulatory T cells and Th17 cells. Inflammation, 42(1), 199–210. https://doi.org/10.1007/s10753-018-0884-6 . (PMID: 10.1007/s10753-018-0884-630187337)
      Tong, L., Zhou, J., Rong, L., Seeley, E. J., Pan, J., Zhu, X., Liu, J., Wang, Q., Tang, X., Qu, J., Bai, C., & Song, Y. (2016). Fibroblast growth Factor-10 (FGF-10) mobilizes lung-resident Mesenchymal stem cells and protects against acute lung injury. Scientific Reports, 6, 21642. https://doi.org/10.1038/srep21642 . (PMID: 10.1038/srep21642268693374751498)
      Lu, Z., Chang, W., Meng, S., Xu, X., Xie, J., Guo, F., Yang, Y., Qiu, H., & Liu, L. (2019). Mesenchymal stem cells induce dendritic cell immune tolerance via paracrine hepatocyte growth factor to alleviate acute lung injury. Stem Cell Research & Therapy, 10(1), 372. https://doi.org/10.1186/s13287-019-1488-2 . (PMID: 10.1186/s13287-019-1488-2)
      Rolandsson Enes, S., Andersson Sjöland, A., Skog, I., Hansson, L., Larsson, H., Le Blanc, K., et al. (2016). MSC from fetal and adult lungs possess lung-specific properties compared to bone marrow-derived MSC. Scientific Reports, 6, 29160. https://doi.org/10.1038/srep29160 . (PMID: 10.1038/srep29160273810394933903)
      Cao, H., Wang, C., Chen, X., Hou, J., Xiang, Z., Shen, Y., & Han, X. (2018). Inhibition of Wnt/β-catenin signaling suppresses myofibroblast differentiation of lung resident mesenchymal stem cells and pulmonary fibrosis. Scientific Reports, 8(1), 13644. https://doi.org/10.1038/s41598-018-28968-9 . (PMID: 10.1038/s41598-018-28968-9302062656134002)
      Cao, H., Chen, X., Hou, J., Wang, C., Xiang, Z., Shen, Y., & Han, X. (2020). The Shh/Gli signaling cascade regulates myofibroblastic activation of lung-resident mesenchymal stem cells via the modulation of Wnt10a expression during pulmonary fibrogenesis. Laboratory Investigation, 100(3), 363–377. https://doi.org/10.1038/s41374-019-0316-8 . (PMID: 10.1038/s41374-019-0316-831541181)
      Shi, C., Cao, X., Chen, X., Sun, Z., Xiang, Z., Zhao, H., Qian, W., & Han, X. (2015). Intracellular surface-enhanced Raman scattering probes based on TAT peptide-conjugated au nanostars for distinguishing the differentiation of lung resident mesenchymal stem cells. Biomaterials, 58, 10–25. https://doi.org/10.1016/j.biomaterials.2015.04.010 . (PMID: 10.1016/j.biomaterials.2015.04.01025941778)
      Hynes, K., Menicanin, D., Mrozik, K., Gronthos, S., & Bartold, P. M. (2014). Generation of functional mesenchymal stem cells from different induced pluripotent stem cell lines. Stem Cells and Development, 23(10), 1084–1096. https://doi.org/10.1089/scd.2013.0111 . (PMID: 10.1089/scd.2013.011124367908)
      Tang, M., Chen, W., Liu, J., Weir, M. D., Cheng, L., & Xu, H. H. (2014). Human induced pluripotent stem cell-derived mesenchymal stem cell seeding on calcium phosphate scaffold for bone regeneration. Tissue Engineering. Part A, 20(7–8), 1295–1305. https://doi.org/10.1089/ten.TEA.2013.0211 . (PMID: 10.1089/ten.TEA.2013.0211242798683993076)
      Pinto, D. S., Ahsan, T., Serra, J., Fernandes-Platzgummer, A., Cabral, J. M. S., & da Silva, C. L. (2020). Modulation of the in vitro angiogenic potential of human mesenchymal stromal cells from different tissue sources. Journal of Cellular Physiology, 235(10), 7224–7238. https://doi.org/10.1002/jcp.29622 . (PMID: 10.1002/jcp.2962232037550)
      Soontararak, S., Chow, L., Johnson, V., Coy, J., Wheat, W., Regan, D., & Dow, S. (2018). Mesenchymal stem cells (MSC) derived from induced pluripotent stem cells (iPSC) equivalent to adipose-derived MSC in promoting intestinal healing and microbiome normalization in mouse inflammatory bowel disease model. Stem Cells Translational Medicine, 7(6), 456–467. https://doi.org/10.1002/sctm.17-0305 . (PMID: 10.1002/sctm.17-0305296358685980202)
      Yoshihara, M., Hayashizaki, Y., & Murakawa, Y. (2017). Genomic instability of iPSCs: Challenges towards their clinical applications. Stem Cell Reviews and Reports, 13(1), 7–16. https://doi.org/10.1007/s12015-016-9680-6 . (PMID: 10.1007/s12015-016-9680-627592701)
      A Study of CYP-001 for the Treatment of Steroid-Resistant Acute Graft Versus Host Disease (2016). https://clinicaltrials.gov/ct2/show/NCT02923375?term=cyp-001&draw=2&rank=1 . Accessed December 9, 2020.
      The MEseNchymal coviD-19 Trial: a Pilot Study to Investigate Early Efficacy of MSCs in Adults With COVID-19 (MEND) (2020). https://clinicaltrials.gov/ct2/show/NCT04537351?term=cyp-001&draw=2&rank=2 . Accessed December 9, 2020.
      Yao, Y., Fan, X. L., Jiang, D., Zhang, Y., Li, X., Xu, Z. B., Fang, S. B., Chiu, S., Tse, H. F., Lian, Q., & Fu, Q. L. (2018). Connexin 43-mediated mitochondrial transfer of iPSC-MSCs alleviates asthma inflammation. Stem Cell Reports, 11(5), 1120–1135. https://doi.org/10.1016/j.stemcr.2018.09.012 . (PMID: 10.1016/j.stemcr.2018.09.012303440086234920)
      Royce, S. G., Mao, W., Lim, R., Kelly, K., & Samuel, C. S. (2019). iPSC- and mesenchymoangioblast-derived mesenchymal stem cells provide greater protection against experimental chronic allergic airways disease compared with a clinically used corticosteroid. The FASEB Journal, 33(5), 6402–6411. https://doi.org/10.1096/fj.201802307R . (PMID: 10.1096/fj.201802307R30768365)
      Royce, S. G., Rele, S., Broughton, B. R. S., Kelly, K., & Samuel, C. S. (2017). Intranasal administration of mesenchymoangioblast-derived mesenchymal stem cells abrogates airway fibrosis and airway hyperresponsiveness associated with chronic allergic airways disease. The FASEB Journal, 31(9), 4168–4178. https://doi.org/10.1096/fj.201700178R . (PMID: 10.1096/fj.201700178R28626025)
      Ren, G., Zhang, L., Zhao, X., Xu, G., Zhang, Y., Roberts, A. I., Zhao, R. C., & Shi, Y. (2008). Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell, 2(2), 141–150. https://doi.org/10.1016/j.stem.2007.11.014 . (PMID: 10.1016/j.stem.2007.11.01418371435)
      Sudres, M., Norol, F., Trenado, A., Grégoire, S., Charlotte, F., Levacher, B., Lataillade, J. J., Bourin, P., Holy, X., Vernant, J. P., Klatzmann, D., & Cohen, J. L. (2006). Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice. Journal of Immunology, 176(12), 7761–7767. https://doi.org/10.4049/jimmunol.176.12.7761 . (PMID: 10.4049/jimmunol.176.12.7761)
      Zappia, E., Casazza, S., Pedemonte, E., Benvenuto, F., Bonanni, I., Gerdoni, E., Giunti, D., Ceravolo, A., Cazzanti, F., Frassoni, F., Mancardi, G., & Uccelli, A. (2005). Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood, 106(5), 1755–1761. https://doi.org/10.1182/blood-2005-04-1496 . (PMID: 10.1182/blood-2005-04-149615905186)
      Zhou, Y., Day, A., Haykal, S., Keating, A., & Waddell, T. K. (2013). Mesenchymal stromal cells augment CD4+ and CD8+ T-cell proliferation through a CCL2 pathway. Cytotherapy, 15(10), 1195–1207. https://doi.org/10.1016/j.jcyt.2013.05.009 . (PMID: 10.1016/j.jcyt.2013.05.00923845188)
      Deng, Y., Zhang, Y., Ye, L., Zhang, T., Cheng, J., Chen, G., Zhang, Q., & Yang, Y. (2016). Umbilical cord-derived Mesenchymal stem cells instruct monocytes towards an IL10-producing phenotype by secreting IL6 and HGF. Scientific Reports, 6, 37566. https://doi.org/10.1038/srep37566 . (PMID: 10.1038/srep37566279178665137158)
      Luz-Crawford, P., Kurte, M., Bravo-Alegría, J., Contreras, R., Nova-Lamperti, E., Tejedor, G., Noël, D., Jorgensen, C., Figueroa, F., Djouad, F., & Carrión, F. (2013). Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Research & Therapy, 4(3), 65. https://doi.org/10.1186/scrt216 . (PMID: 10.1186/scrt216)
      Sheng, H., Wang, Y., Jin, Y., Zhang, Q., Zhang, Y., Wang, L., Shen, B., Yin, S., Liu, W., Cui, L., & Li, N. (2008). A critical role of IFNgamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Research, 18(8), 846–857. https://doi.org/10.1038/cr.2008.80 . (PMID: 10.1038/cr.2008.8018607390)
      Spaggiari, G. M., Capobianco, A., Becchetti, S., Mingari, M. C., & Moretta, L. (2006). Mesenchymal stem cell-natural killer cell interactions: Evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood, 107(4), 1484–1490. https://doi.org/10.1182/blood-2005-07-2775 . (PMID: 10.1182/blood-2005-07-277516239427)
      Spaggiari, G. M., Capobianco, A., Abdelrazik, H., Becchetti, F., Mingari, M. C., & Moretta, L. (2008). Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: Role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood, 111(3), 1327–1333. https://doi.org/10.1182/blood-2007-02-074997 . (PMID: 10.1182/blood-2007-02-07499717951526)
      Luz-Crawford, P., Djouad, F., Toupet, K., Bony, C., Franquesa, M., Hoogduijn, M. J., Jorgensen, C., & Noël, D. (2016). Mesenchymal stem cell-derived interleukin 1 receptor antagonist promotes macrophage polarization and inhibits B cell differentiation. Stem Cells, 34(2), 483–492. https://doi.org/10.1002/stem.2254 . (PMID: 10.1002/stem.225426661518)
      Rosado, M. M., Bernardo, M. E., Scarsella, M., Conforti, A., Giorda, E., Biagini, S., Cascioli, S., Rossi, F., Guzzo, I., Vivarelli, M., dello Strologo, L., Emma, F., Locatelli, F., & Carsetti, R. (2015). Inhibition of B-cell proliferation and antibody production by mesenchymal stromal cells is mediated by T cells. Stem Cells and Development, 24(1), 93–103. https://doi.org/10.1089/scd.2014.0155 . (PMID: 10.1089/scd.2014.015525036865)
      Zhou, H., Guo, M., Bian, C., Sun, Z., Yang, Z., Zeng, Y., Ai, H. S., & Zhao, R. C. (2010). Efficacy of bone marrow-derived mesenchymal stem cells in the treatment of sclerodermatous chronic graft-versus-host disease: Clinical report. Biology of Blood and Marrow Transplantation, 16(3), 403–412. https://doi.org/10.1016/j.bbmt.2009.11.006 . (PMID: 10.1016/j.bbmt.2009.11.00619925878)
      Duijvestein, M., Vos, A. C., Roelofs, H., Wildenberg, M. E., Wendrich, B. B., Verspaget, H. W., et al. (2010). Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: Results of a phase I study. Gut, 59(12), 1662–1669. https://doi.org/10.1136/gut.2010.215152 . (PMID: 10.1136/gut.2010.21515220921206)
      Wang, D., Li, J., Zhang, Y., Zhang, M., Chen, J., Li, X., Hu, X., Jiang, S., Shi, S., & Sun, L. (2014). Umbilical cord mesenchymal stem cell transplantation in active and refractory systemic lupus erythematosus: A multicenter clinical study. Arthritis Research & Therapy, 16(2), R79. https://doi.org/10.1186/ar4520 . (PMID: 10.1186/ar4520)
      Kim, Y., Jin, H. J., Heo, J., Ju, H., Lee, H. Y., Kim, S., Lee, S., Lim, J., Jeong, S. Y., Kwon, J. H., Kim, M., Choi, S. J., Oh, W., Yang, Y. S., Hwang, H. H., Yu, H. Y., Ryu, C. M., Jeon, H. B., & Shin, D. M. (2018). Small hypoxia-primed mesenchymal stem cells attenuate graft-versus-host disease. Leukemia, 32(12), 2672–2684. https://doi.org/10.1038/s41375-018-0151-8 . (PMID: 10.1038/s41375-018-0151-8297896526286327)
      Waterman, R. S., Tomchuck, S. L., Henkle, S. L., & Betancourt, A. M. (2010). A new mesenchymal stem cell (MSC) paradigm: Polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS One, 5(4), e10088. https://doi.org/10.1371/journal.pone.0010088 . (PMID: 10.1371/journal.pone.0010088204366652859930)
      Lee, S. C., Jeong, H. J., Lee, S. K., & Kim, S. J. (2015). Lipopolysaccharide preconditioning of adipose-derived stem cells improves liver-regenerating activity of the secretome. Stem Cell Research & Therapy, 6, 75. https://doi.org/10.1186/s13287-015-0072-7 . (PMID: 10.1186/s13287-015-0072-7)
      Noone, C., Kihm, A., English, K., O'Dea, S., & Mahon, B. P. (2013). IFN-gamma stimulated human umbilical-tissue-derived cells potently suppress NK activation and resist NK-mediated cytotoxicity in vitro. Stem Cells and Development, 22(22), 3003–3014. https://doi.org/10.1089/scd.2013.0028 . (PMID: 10.1089/scd.2013.0028237959413824722)
      Francois, M., Romieu-Mourez, R., Li, M., & Galipeau, J. (2012). Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Molecular Therapy, 20(1), 187–195. https://doi.org/10.1038/mt.2011.189 . (PMID: 10.1038/mt.2011.18921934657)
      Sivanathan, K. N., Rojas-Canales, D. M., Hope, C. M., Krishnan, R., Carroll, R. P., Gronthos, S., Grey, S. T., & Coates, P. T. (2015). Interleukin-17A-induced human Mesenchymal stem cells are superior modulators of immunological function. Stem Cells, 33(9), 2850–2863. https://doi.org/10.1002/stem.2075 . (PMID: 10.1002/stem.207526037953)
      Benvenuto, F., Ferrari, S., Gerdoni, E., Gualandi, F., Frassoni, F., Pistoia, V., Mancardi, G., & Uccelli, A. (2007). Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem Cells, 25(7), 1753–1760. https://doi.org/10.1634/stemcells.2007-0068 . (PMID: 10.1634/stemcells.2007-006817395776)
      Pevsner-Fischer, M., Morad, V., Cohen-Sfady, M., Rousso-Noori, L., Zanin-Zhorov, A., Cohen, S., Cohen, I. R., & Zipori, D. (2007). Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood, 109(4), 1422–1432. https://doi.org/10.1182/blood-2006-06-028704 . (PMID: 10.1182/blood-2006-06-02870417038530)
      Gao, F., Chiu, S. M., Motan, D. A., Zhang, Z., Chen, L., Ji, H. L., et al. (2016). Mesenchymal stem cells and immunomodulation: Current status and future prospects. Cell Death & Disease, 7, e2062. https://doi.org/10.1038/cddis.2015.327 . (PMID: 10.1038/cddis.2015.327)
      Fang, S. B., Zhang, H. Y., Wang, C., He, B. X., Liu, X. Q., Meng, X. C., Peng, Y. Q., Xu, Z. B., Fan, X. L., Wu, Z. J., Chen, D., Zheng, L., Zheng, S. G., & Fu, Q. L. (2020). Small extracellular vesicles derived from human mesenchymal stromal cells prevent group 2 innate lymphoid cell-dominant allergic airway inflammation through delivery of miR-146a-5p. J Extracell Vesicles, 9(1), 1723260. https://doi.org/10.1080/20013078.2020.1723260 . (PMID: 10.1080/20013078.2020.1723260321280747034457)
      Li, Y., Zhang, D., Xu, L., Dong, L., Zheng, J., Lin, Y., Huang, J., Zhang, Y., Tao, Y., Zang, X., Li, D., & du, M. (2019). Cell-cell contact with proinflammatory macrophages enhances the immunotherapeutic effect of mesenchymal stem cells in two abortion models. Cellular & Molecular Immunology, 16(12), 908–920. https://doi.org/10.1038/s41423-019-0204-6 . (PMID: 10.1038/s41423-019-0204-6)
      Ni, K., Liu, M., Zheng, J., Wen, L., Chen, Q., Xiang, Z., Lam, K. T., Liu, Y., Chan, G. C. F., Lau, Y. L., & Tu, W. (2018). PD-1/PD-L1 pathway mediates the alleviation of pulmonary fibrosis by human Mesenchymal stem cells in humanized mice. American Journal of Respiratory Cell and Molecular Biology, 58(6), 684–695. https://doi.org/10.1165/rcmb.2017-0326OC . (PMID: 10.1165/rcmb.2017-0326OC29220578)
      Li, H., Wang, W., Wang, G., Hou, Y., Xu, F., Liu, R., Wang, F., Xue, J., Hu, T., & Luan, X. (2015). Interferon-γ and tumor necrosis factor-α promote the ability of human placenta-derived mesenchymal stromal cells to express programmed death ligand-2 and induce the differentiation of CD4(+)interleukin-10(+) and CD8(+)interleukin-10(+)Treg subsets. Cytotherapy, 17(11), 1560–1571. https://doi.org/10.1016/j.jcyt.2015.07.018 . (PMID: 10.1016/j.jcyt.2015.07.01826432559)
      Singh, A. K., Stock, P., & Akbari, O. (2011). Role of PD-L1 and PD-L2 in allergic diseases and asthma. Allergy, 66(2), 155–162. https://doi.org/10.1111/j.1398-9995.2010.02458.x . (PMID: 10.1111/j.1398-9995.2010.02458.x20722638)
      Wang, W. B., Yen, M. L., Liu, K. J., Hsu, P. J., Lin, M. H., Chen, P. M., Sudhir, P. R., Chen, C. H., Chen, C. H., Sytwu, H. K., & Yen, B. L. (2015). Interleukin-25 mediates transcriptional control of PD-L1 via STAT3 in multipotent human Mesenchymal stromal cells (hMSCs) to suppress Th17 responses. Stem Cell Reports, 5(3), 392–404. https://doi.org/10.1016/j.stemcr.2015.07.013 . (PMID: 10.1016/j.stemcr.2015.07.013263211454618596)
      Azevedo, R. I., Minskaia, E., Fernandes-Platzgummer, A., Vieira, A. I. S., da Silva, C. L., Cabral, J. M. S., & Lacerda, J. F. (2020). Mesenchymal stromal cells induce regulatory T cells via epigenetic conversion of human conventional CD4 T cells in vitro. Stem Cells, 38(8), 1007–1019. https://doi.org/10.1002/stem.3185 . (PMID: 10.1002/stem.3185323521867497276)
      Lee, H. J., Kim, S. N., Jeon, M. S., Yi, T., & Song, S. U. (2017). ICOSL expression in human bone marrow-derived mesenchymal stem cells promotes induction of regulatory T cells. Scientific Reports, 7, 44486. https://doi.org/10.1038/srep44486 . (PMID: 10.1038/srep44486282905265349520)
      Krampera, M., Cosmi, L., Angeli, R., Pasini, A., Liotta, F., Andreini, A., Santarlasci, V., Mazzinghi, B., Pizzolo, G., Vinante, F., Romagnani, P., Maggi, E., Romagnani, S., & Annunziato, F. (2006). Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells, 24(2), 386–398. https://doi.org/10.1634/stemcells.2005-0008 . (PMID: 10.1634/stemcells.2005-000816123384)
      Gieseke, F., Böhringer, J., Bussolari, R., Dominici, M., Handgretinger, R., & Müller, I. (2010). Human multipotent mesenchymal stromal cells use galectin-1 to inhibit immune effector cells. Blood, 116(19), 3770–3779. https://doi.org/10.1182/blood-2010-02-270777 . (PMID: 10.1182/blood-2010-02-27077720644118)
      Chinnadurai, R., Copland, I. B., Patel, S. R., & Galipeau, J. (2014). IDO-independent suppression of T cell effector function by IFN-γ-licensed human mesenchymal stromal cells. Journal of Immunology, 192(4), 1491–1501. https://doi.org/10.4049/jimmunol.1301828 . (PMID: 10.4049/jimmunol.1301828)
      Ren, G., Zhao, X., Zhang, L., Zhang, J., L'Huillier, A., Ling, W., Roberts, A. I., le, A. D., Shi, S., Shao, C., & Shi, Y. (2010). Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. Journal of Immunology, 184(5), 2321–2328. https://doi.org/10.4049/jimmunol.0902023 . (PMID: 10.4049/jimmunol.0902023)
      Schena, F., Gambini, C., Gregorio, A., Mosconi, M., Reverberi, D., Gattorno, M., Casazza, S., Uccelli, A., Moretta, L., Martini, A., & Traggiai, E. (2010). Interferon-γ-dependent inhibition of B cell activation by bone marrow-derived mesenchymal stem cells in a murine model of systemic lupus erythematosus. Arthritis and Rheumatism, 62(9), 2776–2786. https://doi.org/10.1002/art.27560 . (PMID: 10.1002/art.2756020496367)
      Luk, F., Carreras-Planella, L., Korevaar, S. S., de Witte, S. F. H., Borràs, F. E., Betjes, M. G. H., Baan, C. C., Hoogduijn, M. J., & Franquesa, M. (2017). Inflammatory conditions dictate the effect of Mesenchymal stem or stromal cells on B cell function. Frontiers in Immunology, 8, 1042. https://doi.org/10.3389/fimmu.2017.01042 . (PMID: 10.3389/fimmu.2017.01042288944515581385)
      Luk, F., de Witte, S. F., Korevaar, S. S., Roemeling-van Rhijn, M., Franquesa, M., Strini, T., et al. (2016). Inactivated Mesenchymal stem cells maintain Immunomodulatory capacity. Stem Cells and Development, 25(18), 1342–1354. https://doi.org/10.1089/scd.2016.0068 . (PMID: 10.1089/scd.2016.006827349989)
      Li, W., Ren, G., Huang, Y., Su, J., Han, Y., Li, J., Chen, X., Cao, K., Chen, Q., Shou, P., Zhang, L., Yuan, Z. R., Roberts, A. I., Shi, S., le, A. D., & Shi, Y. (2012). Mesenchymal stem cells: A double-edged sword in regulating immune responses. Cell Death and Differentiation, 19(9), 1505–1513. https://doi.org/10.1038/cdd.2012.26 . (PMID: 10.1038/cdd.2012.26224219693422473)
      Peng, Y., Chen, X., Liu, Q., Zhang, X., Huang, K., Liu, L., Li, H., Zhou, M., Huang, F., Fan, Z., Sun, J., Liu, Q., Ke, M., Li, X., Zhang, Q., & Xiang, A. P. (2015). Mesenchymal stromal cells infusions improve refractory chronic graft versus host disease through an increase of CD5+ regulatory B cells producing interleukin 10. Leukemia, 29(3), 636–646. https://doi.org/10.1038/leu.2014.225 . (PMID: 10.1038/leu.2014.22525034146)
      Kim, J., & Hematti, P. (2009). Mesenchymal stem cell-educated macrophages: A novel type of alternatively activated macrophages. Experimental Hematology, 37(12), 1445–1453. https://doi.org/10.1016/j.exphem.2009.09.004 . (PMID: 10.1016/j.exphem.2009.09.004197728902783735)
      Mougiakakos, D., Jitschin, R., Johansson, C. C., Okita, R., Kiessling, R., & Le Blanc, K. (2011). The impact of inflammatory licensing on heme oxygenase-1-mediated induction of regulatory T cells by human mesenchymal stem cells. Blood, 117(18), 4826–4835. https://doi.org/10.1182/blood-2010-12-324038 . (PMID: 10.1182/blood-2010-12-32403821389316)
      Li, Y. P., Paczesny, S., Lauret, E., Poirault, S., Bordigoni, P., Mekhloufi, F., Hequet, O., Bertrand, Y., Ou-Yang, J. P., Stoltz, J. F., Miossec, P., & Eljaafari, A. (2008). Human mesenchymal stem cells license adult CD34+ hemopoietic progenitor cells to differentiate into regulatory dendritic cells through activation of the notch pathway. Journal of Immunology, 180(3), 1598–1608. https://doi.org/10.4049/jimmunol.180.3.1598 . (PMID: 10.4049/jimmunol.180.3.1598)
      Djouad, F., Charbonnier, L. M., Bouffi, C., Louis-Plence, P., Bony, C., Apparailly, F., Cantos, C., Jorgensen, C., & Noël, D. (2007). Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells, 25(8), 2025–2032. https://doi.org/10.1634/stemcells.2006-0548 . (PMID: 10.1634/stemcells.2006-054817510220)
      Zhong, Z., Chen, A., Fa, Z., Ding, Z., Xiao, L., Wu, G., Wang, Q., & Zhang, R. (2020). Bone marrow mesenchymal stem cells upregulate PI3K/AKT pathway and down-regulate NF-κB pathway by secreting glial cell-derived neurotrophic factors to regulate microglial polarization and alleviate deafferentation pain in rats. Neurobiology of Disease, 143, 104945. https://doi.org/10.1016/j.nbd.2020.104945 . (PMID: 10.1016/j.nbd.2020.10494532428552)
      Sgrignoli, M. R., Silva, D. A., Nascimento, F. F., Sgrignoli, D. A. M., Nai, G. A., da Silva, M. G., de Barros, M. A., Bittencourt, M. K. W., de Morais, B. P., Dinallo, H. R., Foglia, B. T. D., Cabrera, W. B., Fares, E. C., & Andrade, S. F. (2019). Reduction in the inflammatory markers CD4, IL-1, IL-6 and TNFα in dogs with keratoconjunctivitis sicca treated topically with mesenchymal stem cells. Stem Cell Research, 39, 101525. https://doi.org/10.1016/j.scr.2019.101525 . (PMID: 10.1016/j.scr.2019.10152531430719)
      Shi, B., Qi, J., Yao, G., Feng, R., Zhang, Z., Wang, D., Chen, C., Tang, X., Lu, L., Chen, W., & Sun, L. (2018). Mesenchymal stem cell transplantation ameliorates Sjögren's syndrome via suppressing IL-12 production by dendritic cells. Stem Cell Research & Therapy, 9(1), 308. https://doi.org/10.1186/s13287-018-1023-x . (PMID: 10.1186/s13287-018-1023-x)
      Chatterjee, D., Marquardt, N., Tufa, D. M., Hatlapatka, T., Hass, R., Kasper, C., von Kaisenberg, C., Schmidt, R. E., & Jacobs, R. (2014). Human umbilical cord-derived Mesenchymal stem cells utilize Activin-a to suppress interferon-γ production by natural killer cells. Frontiers in Immunology, 5, 662. https://doi.org/10.3389/fimmu.2014.00662 . (PMID: 10.3389/fimmu.2014.00662255840444278046)
      Abumaree, M. H., Al Jumah, M. A., Kalionis, B., Jawdat, D., Al Khaldi, A., Abomaray, F. M., et al. (2013). Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages. Stem Cell Reviews and Reports, 9(5), 620–641. https://doi.org/10.1007/s12015-013-9455-2 . (PMID: 10.1007/s12015-013-9455-223812784)
      Lim, J. Y., Im, K. I., Lee, E. S., Kim, N., Nam, Y. S., Jeon, Y. W., & Cho, S. G. (2016). Enhanced immunoregulation of mesenchymal stem cells by IL-10-producing type 1 regulatory T cells in collagen-induced arthritis. Scientific Reports, 6, 26851. https://doi.org/10.1038/srep26851 . (PMID: 10.1038/srep26851272463654887998)
      Dong, J., Wong, C. K., Cai, Z., Jiao, D., Chu, M., & Lam, C. W. (2015). Amelioration of allergic airway inflammation in mice by regulatory IL-35 through dampening inflammatory dendritic cells. Allergy, 70(8), 921–932. https://doi.org/10.1111/all.12631 . (PMID: 10.1111/all.1263125869299)
      Whitehead, G. S., Wilson, R. H., Nakano, K., Burch, L. H., Nakano, H., & Cook, D. N. (2012). IL-35 production by inducible costimulator (ICOS)-positive regulatory T cells reverses established IL-17-dependent allergic airways disease. The Journal of Allergy and Clinical Immunology, 129(1), 207–215.e201-205. https://doi.org/10.1016/j.jaci.2011.08.009 . (PMID: 10.1016/j.jaci.2011.08.00921906794)
      Cho, K. A., Lee, J. K., Kim, Y. H., Park, M., Woo, S. Y., & Ryu, K. H. (2017). Mesenchymal stem cells ameliorate B-cell-mediated immune responses and increase IL-10-expressing regulatory B cells in an EBI3-dependent manner. Cellular & Molecular Immunology, 14, 895–908. https://doi.org/10.1038/cmi.2016.59 . (PMID: 10.1038/cmi.2016.59)
      O'Garra, A., Stockinger, B., & Veldhoen, M. (2008). Differentiation of human T(H)-17 cells does require TGF-beta! Nature Immunology, 9(6), 588–590. https://doi.org/10.1038/ni0608-588 . (PMID: 10.1038/ni0608-58818490908)
      Batlle, E., & Massagué, J. (2019). Transforming growth factor-β signaling in immunity and cancer. Immunity, 50(4), 924–940. https://doi.org/10.1016/j.immuni.2019.03.024 . (PMID: 10.1016/j.immuni.2019.03.024309955077507121)
      Zhou, L., Lopes, J. E., Chong, M. M., Ivanov, I. I., Min, R., Victora, G. D., et al. (2008). TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature, 453(7192), 236–240. https://doi.org/10.1038/nature06878 . (PMID: 10.1038/nature06878183680492597437)
      Gong, D., Shi, W., Yi, S. J., Chen, H., Groffen, J., & Heisterkamp, N. (2012). TGFβ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunology, 13, 31. https://doi.org/10.1186/1471-2172-13-31 . (PMID: 10.1186/1471-2172-13-31227032333406960)
      Paun, A., Bergeron, M. E., & Haston, C. K. (2017). The Th1/Th17 balance dictates the fibrosis response in murine radiation-induced lung disease. Scientific Reports, 7(1), 11586. https://doi.org/10.1038/s41598-017-11656-5 . (PMID: 10.1038/s41598-017-11656-5289125105599556)
      Ratajczak, J., Miekus, K., Kucia, M., Zhang, J., Reca, R., Dvorak, P., & Ratajczak, M. Z. (2006). Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: Evidence for horizontal transfer of mRNA and protein delivery. Leukemia, 20(5), 847–856. https://doi.org/10.1038/sj.leu.2404132 . (PMID: 10.1038/sj.leu.240413216453000)
      Ratajczak, J., Wysoczynski, M., Hayek, F., Janowska-Wieczorek, A., & Ratajczak, M. Z. (2006). Membrane-derived microvesicles: Important and underappreciated mediators of cell-to-cell communication. Leukemia, 20(9), 1487–1495. https://doi.org/10.1038/sj.leu.2404296 . (PMID: 10.1038/sj.leu.240429616791265)
      Ratajczak, M. Z., & Ratajczak, J. (2020). Extracellular microvesicles/exosomes: Discovery, disbelief, acceptance, and the future? Leukemia, 34, 3126–3135. https://doi.org/10.1038/s41375-020-01041-z . (PMID: 10.1038/s41375-020-01041-z329291297685969)
      Phinney, D. G., Di Giuseppe, M., Njah, J., Sala, E., Shiva, S., St Croix, C. M., et al. (2015). Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nature Communications, 6, 8472. https://doi.org/10.1038/ncomms9472 . (PMID: 10.1038/ncomms947226442449)
      Kim, H. S., Choi, D. Y., Yun, S. J., Choi, S. M., Kang, J. W., Jung, J. W., Hwang, D., Kim, K. P., & Kim, D. W. (2012). Proteomic analysis of microvesicles derived from human mesenchymal stem cells. Journal of Proteome Research, 11(2), 839–849. https://doi.org/10.1021/pr200682z . (PMID: 10.1021/pr200682z22148876)
      Du, T., Zou, X., Cheng, J., Wu, S., Zhong, L., Ju, G., et al. (2013). Human Wharton's jelly-derived mesenchymal stromal cells reduce renal fibrosis through induction of native and foreign hepatocyte growth factor synthesis in injured tubular epithelial cells. Stem Cell Research & Therapy, 4(3), 59. https://doi.org/10.1186/scrt215 . (PMID: 10.1186/scrt215)
      Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4), 1815–1822. https://doi.org/10.1182/blood-2004-04-1559 . (PMID: 10.1182/blood-2004-04-155915494428)
      Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99(10), 3838–3843. https://doi.org/10.1182/blood.v99.10.3838 . (PMID: 10.1182/blood.v99.10.383811986244)
      Hwu, P., Du, M. X., Lapointe, R., Do, M., Taylor, M. W., & Young, H. A. (2000). Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. Journal of Immunology, 164(7), 3596–3599. https://doi.org/10.4049/jimmunol.164.7.3596 . (PMID: 10.4049/jimmunol.164.7.3596)
      Harting, M. T., Srivastava, A. K., Zhaorigetu, S., Bair, H., Prabhakara, K. S., Toledano Furman, N. E., Vykoukal, J. V., Ruppert, K. A., Cox Jr., C. S., & Olson, S. D. (2018). Inflammation-stimulated Mesenchymal stromal cell-derived extracellular vesicles attenuate inflammation. Stem Cells, 36(1), 79–90. https://doi.org/10.1002/stem.2730 . (PMID: 10.1002/stem.273029076623)
      Wu, S., Ju, G. Q., Du, T., Zhu, Y. J., & Liu, G. H. (2013). Microvesicles derived from human umbilical cord Wharton's jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo. PLoS One, 8(4), e61366. https://doi.org/10.1371/journal.pone.0061366 . (PMID: 10.1371/journal.pone.0061366235934753625149)
      Di Trapani, M., Bassi, G., Midolo, M., Gatti, A., Kamga, P. T., Cassaro, A., et al. (2016). Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions. Scientific Reports, 6, 24120. https://doi.org/10.1038/srep24120 . (PMID: 10.1038/srep24120270716764829861)
      Thomi, G., Surbek, D., Haesler, V., Joerger-Messerli, M., & Schoeberlein, A. (2019). Exosomes derived from umbilical cord mesenchymal stem cells reduce microglia-mediated neuroinflammation in perinatal brain injury. Stem Cell Research & Therapy, 10(1), 105. https://doi.org/10.1186/s13287-019-1207-z . (PMID: 10.1186/s13287-019-1207-z)
      Zhu, H., Lan, L., Zhang, Y., Chen, Q., Zeng, Y., Luo, X., Ren, J., Chen, S., Xiao, M., Lin, K., Chen, M., Li, Q., Chen, Y., Xu, J., Zheng, Z., Chen, Z., Xie, Y., Hu, J., & Yang, T. (2020). Epidermal growth factor stimulates exosomal microRNA-21 derived from mesenchymal stem cells to ameliorate aGVHD by modulating regulatory T cells. The FASEB Journal, 34(6), 7372–7386. https://doi.org/10.1096/fj.201900847RRRR . (PMID: 10.1096/fj.201900847RRRR32314840)
      Reis, M., Mavin, E., Nicholson, L., Green, K., Dickinson, A. M., & Wang, X. N. (2018). Mesenchymal stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function. Frontiers in Immunology, 9, 2538. https://doi.org/10.3389/fimmu.2018.02538 . (PMID: 10.3389/fimmu.2018.02538304736956237916)
      Shahir, M., Mahmoud Hashemi, S., Asadirad, A., Varahram, M., Kazempour-Dizaji, M., Folkerts, G., Garssen, J., Adcock, I., & Mortaz, E. (2020). Effect of mesenchymal stem cell-derived exosomes on the induction of mouse tolerogenic dendritic cells. Journal of Cellular Physiology, 235(10), 7043–7055. https://doi.org/10.1002/jcp.29601 . (PMID: 10.1002/jcp.29601320435937496360)
      Cho, B. S., Kim, J. O., Ha, D. H., & Yi, Y. W. (2018). Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis. Stem Cell Research & Therapy, 9(1), 187. https://doi.org/10.1186/s13287-018-0939-5 . (PMID: 10.1186/s13287-018-0939-5)
      Lambrecht, B. N., & Hammad, H. (2015). The immunology of asthma. Nature Immunology, 16(1), 45–56. https://doi.org/10.1038/ni.3049 . (PMID: 10.1038/ni.304925521684)
      Kavanagh, H., & Mahon, B. P. (2011). Allogeneic mesenchymal stem cells prevent allergic airway inflammation by inducing murine regulatory T cells. Allergy, 66(4), 523–531. https://doi.org/10.1111/j.1398-9995.2010.02509.x . (PMID: 10.1111/j.1398-9995.2010.02509.x21091718)
      Chen, Q. H., Wu, F., Liu, L., Chen, H. B., Zheng, R. Q., Wang, H. L., & Yu, L. N. (2020). Mesenchymal stem cells regulate the Th17/Treg cell balance partly through hepatocyte growth factor in vitro. Stem Cell Research & Therapy, 11(1), 91. https://doi.org/10.1186/s13287-020-01612-y . (PMID: 10.1186/s13287-020-01612-y)
      Boonpiyathad, T., Sokolowska, M., Morita, H., Rückert, B., Kast, J. I., Wawrzyniak, M., Sangasapaviliya, A., Pradubpongsa, P., Fuengthong, R., Thantiworasit, P., Sirivichayakul, S., Kwok, W. W., Ruxrungtham, K., Akdis, M., & Akdis, C. A. (2019). Der p 1-specific regulatory T-cell response during house dust mite allergen immunotherapy. Allergy, 74(5), 976–985. https://doi.org/10.1111/all.13684 . (PMID: 10.1111/all.1368430485456)
      Rasmusson, I., Ringdén, O., Sundberg, B., & Le Blanc, K. (2005). Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Experimental Cell Research, 305(1), 33–41. https://doi.org/10.1016/j.yexcr.2004.12.013 . (PMID: 10.1016/j.yexcr.2004.12.01315777785)
      Sato, K., Ozaki, K., Oh, I., Meguro, A., Hatanaka, K., Nagai, T., Muroi, K., & Ozawa, K. (2007). Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood, 109(1), 228–234. https://doi.org/10.1182/blood-2006-02-002246 . (PMID: 10.1182/blood-2006-02-00224616985180)
      Su, J., Chen, X., Huang, Y., Li, W., Li, J., Cao, K., Cao, G., Zhang, L., Li, F., Roberts, A. I., Kang, H., Yu, P., Ren, G., Ji, W., Wang, Y., & Shi, Y. (2014). Phylogenetic distinction of iNOS and IDO function in mesenchymal stem cell-mediated immunosuppression in mammalian species. Cell Death and Differentiation, 21(3), 388–396. https://doi.org/10.1038/cdd.2013.149 . (PMID: 10.1038/cdd.2013.14924162664)
      García-Ortiz, A., & Serrador, J. M. (2018). Nitric oxide signaling in T cell-mediated immunity. Trends in Molecular Medicine, 24(4), 412–427. https://doi.org/10.1016/j.molmed.2018.02.002 . (PMID: 10.1016/j.molmed.2018.02.00229519621)
      Ma, O. K., & Chan, K. H. (2016). Immunomodulation by mesenchymal stem cells: Interplay between mesenchymal stem cells and regulatory lymphocytes. World J Stem Cells, 8(9), 268–278. https://doi.org/10.4252/wjsc.v8.i9.268 . (PMID: 10.4252/wjsc.v8.i9.268276796835031888)
      Robinson, D. S. (2010). The role of the T cell in asthma. The Journal of Allergy and Clinical Immunology, 126(6), 1081–1091; quiz 1092-1083. https://doi.org/10.1016/j.jaci.2010.06.025 . (PMID: 10.1016/j.jaci.2010.06.02520709383)
      Ghannam, S., Pène, J., Moquet-Torcy, G., Torcy-Moquet, G., Jorgensen, C., & Yssel, H. (2010). Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. Journal of Immunology, 185(1), 302–312. https://doi.org/10.4049/jimmunol.0902007 . (PMID: 10.4049/jimmunol.0902007)
      Cho, K. S., Park, M. K., Kang, S. A., Park, H. Y., Hong, S. L., Park, H. K., Yu, H. S., & Roh, H. J. (2014). Adipose-derived stem cells ameliorate allergic airway inflammation by inducing regulatory T cells in a mouse model of asthma. Mediators of Inflammation, 2014, 436476–436412. https://doi.org/10.1155/2014/436476 . (PMID: 10.1155/2014/436476252467324160627)
      Park, H. K., Cho, K. S., Park, H. Y., Shin, D. H., Kim, Y. K., Jung, J. S., Park, S. K., & Roh, H. J. (2010). Adipose-derived stromal cells inhibit allergic airway inflammation in mice. Stem Cells and Development, 19(11), 1811–1818. https://doi.org/10.1089/scd.2009.0513 . (PMID: 10.1089/scd.2009.051320225940)
      Braza, F., Dirou, S., Forest, V., Sauzeau, V., Hassoun, D., Chesné, J., Cheminant-Muller, M. A., Sagan, C., Magnan, A., & Lemarchand, P. (2016). Mesenchymal stem cells induce suppressive macrophages through phagocytosis in a mouse model of asthma. Stem Cells, 34(7), 1836–1845. https://doi.org/10.1002/stem.2344 . (PMID: 10.1002/stem.234426891455)
      de Castro, L. L., Xisto, D. G., Kitoko, J. Z., Cruz, F. F., Olsen, P. C., Redondo, P. A. G., Ferreira, T. P. T., Weiss, D. J., Martins, M. A., Morales, M. M., & Rocco, P. R. M. (2017). Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma. Stem Cell Research & Therapy, 8(1), 151. https://doi.org/10.1186/s13287-017-0600-8 . (PMID: 10.1186/s13287-017-0600-8)
      Duong, K. M., Arikkatt, J., Ullah, M. A., Lynch, J. P., Zhang, V., Atkinson, K., Sly, P. D., & Phipps, S. (2015). Immunomodulation of airway epithelium cell activation by mesenchymal stromal cells ameliorates house dust mite-induced airway inflammation in mice. American Journal of Respiratory Cell and Molecular Biology, 53(5), 615–624. https://doi.org/10.1165/rcmb.2014-0431OC . (PMID: 10.1165/rcmb.2014-0431OC25789608)
      Dai, R., Liu, J., Cai, S., Zheng, C., & Zhou, X. (2017). Delivery of adipose-derived mesenchymal stem cells attenuates airway responsiveness and inflammation in a mouse model of ovalbumin-induced asthma. American Journal of Translational Research, 9(5), 2421–2428. (PMID: 285599925446524)
      Hong, G. H., Kwon, H. S., Lee, K. Y., Ha, E. H., Moon, K. A., Kim, S. W., Oh, W., Kim, T. B., Moon, H. B., & Cho, Y. S. (2017). hMSCs suppress neutrophil-dominant airway inflammation in a murine model of asthma. Experimental & Molecular Medicine, 49(1), e288. https://doi.org/10.1038/emm.2016.135 . (PMID: 10.1038/emm.2016.135)
      Abreu, S. C., Antunes, M. A., Xisto, D. G., Cruz, F. F., Branco, V. C., Bandeira, E., Zola Kitoko, J., de Araújo, A. F., Dellatorre-Texeira, L., Olsen, P. C., Weiss, D. J., Diaz, B. L., Morales, M. M., & Rocco, P. R. M. (2017). Bone marrow, adipose, and lung tissue-derived murine Mesenchymal stromal cells release different mediators and differentially affect airway and lung parenchyma in experimental asthma. Stem Cells Translational Medicine, 6(6), 1557–1567. https://doi.org/10.1002/sctm.16-0398 . (PMID: 10.1002/sctm.16-0398284255765689762)
      Bonfield, T. L., Koloze, M., Lennon, D. P., Zuchowski, B., Yang, S. E., & Caplan, A. I. (2010). Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model. American Journal of Physiology. Lung Cellular and Molecular Physiology, 299(6), L760–L770. https://doi.org/10.1152/ajplung.00182.2009 . (PMID: 10.1152/ajplung.00182.2009208177764116401)
      Sugita, K., Steer, C. A., Martinez-Gonzalez, I., Altunbulakli, C., Morita, H., Castro-Giner, F., et al. (2018). Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients. The Journal of Allergy and Clinical Immunology, 141(1), 300–310.e311. https://doi.org/10.1016/j.jaci.2017.02.038 . (PMID: 10.1016/j.jaci.2017.02.03828392332)
      Wawrzyniak, P., Wawrzyniak, M., Wanke, K., Sokolowska, M., Bendelja, K., Rückert, B., Globinska, A., Jakiela, B., Kast, J. I., Idzko, M., Akdis, M., Sanak, M., & Akdis, C. A. (2017). Regulation of bronchial epithelial barrier integrity by type 2 cytokines and histone deacetylases in asthmatic patients. The Journal of Allergy and Clinical Immunology, 139(1), 93–103. https://doi.org/10.1016/j.jaci.2016.03.050 . (PMID: 10.1016/j.jaci.2016.03.05027312821)
      Tan, H. T., Hagner, S., Ruchti, F., Radzikowska, U., Tan, G., Altunbulakli, C., et al. (2018). Tight junction, mucin, and inflammasome-related molecules are differentially expressed in eosinophilic, mixed, and neutrophilic experimental asthma in mice. Allergy, 74, 294–307. https://doi.org/10.1111/all.13619 . (PMID: 10.1111/all.1361930267575)
      Mathias, L. J., Khong, S. M., Spyroglou, L., Payne, N. L., Siatskas, C., Thorburn, A. N., et al. (2013). Alveolar macrophages are critical for the inhibition of allergic asthma by mesenchymal stromal cells. Journal of Immunology, 191(12), 5914–5924. https://doi.org/10.4049/jimmunol.1300667 . (PMID: 10.4049/jimmunol.1300667)
      Takeda, K., Webb, T. L., Ning, F., Shiraishi, Y., Regan, D. P., Chow, L., Smith, M. J., Ashino, S., Guth, A. M., Hopkins, S., Gelfand, E. W., & Dow, S. (2018). Mesenchymal stem cells recruit CCR2. Journal of Immunology, 200(4), 1261–1269. https://doi.org/10.4049/jimmunol.1700562 . (PMID: 10.4049/jimmunol.1700562)
      Ou-Yang, H. F., Huang, Y., Hu, X. B., & Wu, C. G. (2011). Suppression of allergic airway inflammation in a mouse model of asthma by exogenous mesenchymal stem cells. Experimental Biology and Medicine (Maywood, N.J.), 236(12), 1461–1467. https://doi.org/10.1258/ebm.2011.011221 . (PMID: 10.1258/ebm.2011.011221)
      Lin, C. L., Hsiao, G., Wang, C. C., & Lee, Y. L. (2016). Imperatorin exerts antiallergic effects in Th2-mediated allergic asthma via induction of IL-10-producing regulatory T cells by modulating the function of dendritic cells. Pharmacological Research, 110, 111–121. https://doi.org/10.1016/j.phrs.2016.04.030 . (PMID: 10.1016/j.phrs.2016.04.03027185659)
      Kitoko, J. Z., de Castro, L. L., Nascimento, A. P., Abreu, S. C., Cruz, F. F., Arantes, A. C., Xisto, D. G., Martins, M. A., Morales, M. M., Rocco, P. R. M., & Olsen, P. C. (2018). Therapeutic administration of bone marrow-derived mesenchymal stromal cells reduces airway inflammation without up-regulating Tregs in experimental asthma. Clinical and Experimental Allergy, 48(2), 205–216. https://doi.org/10.1111/cea.13048 . (PMID: 10.1111/cea.1304829068567)
      Eiwegger, T., & Akdis, C. A. (2011). IL-33 links tissue cells, dendritic cells and Th2 cell development in a mouse model of asthma. European Journal of Immunology, 41(6), 1535–1538. https://doi.org/10.1002/eji.201141668 . (PMID: 10.1002/eji.20114166821618506)
      Hammad, H., & Lambrecht, B. N. (2008). Dendritic cells and epithelial cells: Linking innate and adaptive immunity in asthma. Nature Reviews. Immunology, 8(3), 193–204. https://doi.org/10.1038/nri2275 . (PMID: 10.1038/nri227518301423)
      Chen, L., Zhang, W., Yue, H., Han, Q., Chen, B., Shi, M., Li, J., Li, B., You, S., Shi, Y., & Zhao, R. C. (2007). Effects of human mesenchymal stem cells on the differentiation of dendritic cells from CD34+ cells. Stem Cells and Development, 16(5), 719–731. https://doi.org/10.1089/scd.2007.0065 . (PMID: 10.1089/scd.2007.006517999594)
      Chen, Y. Q., & Shi, H. Z. (2006). CD28/CTLA-4--CD80/CD86 and ICOS--B7RP-1 costimulatory pathway in bronchial asthma. Allergy, 61(1), 15–26. https://doi.org/10.1111/j.1398-9995.2006.01008.x . (PMID: 10.1111/j.1398-9995.2006.01008.x16364152)
      Zeng, S. L., Wang, L. H., Li, P., Wang, W., & Yang, J. (2015). Mesenchymal stem cells abrogate experimental asthma by altering dendritic cell function. Molecular Medicine Reports, 12(2), 2511–2520. https://doi.org/10.3892/mmr.2015.3706 . (PMID: 10.3892/mmr.2015.3706259363504464445)
      Eljaszewicz, A., Wiese, M., Helmin-Basa, A., Jankowski, M., Gackowska, L., Kubiszewska, I., Kaszewski, W., Michalkiewicz, J., & Zegarski, W. (2013). Collaborating with the enemy: Function of macrophages in the development of neoplastic disease. Mediators of Inflammation, 2013, 831387–831311. https://doi.org/10.1155/2013/831387 . (PMID: 10.1155/2013/831387235768563613099)
      Idzkowska, E., Eljaszewicz, A., Miklasz, P., Musial, W. J., Tycinska, A. M., & Moniuszko, M. (2015). The role of different monocyte subsets in the pathogenesis of atherosclerosis and acute coronary syndromes. Scandinavian Journal of Immunology, 82(3), 163–173. https://doi.org/10.1111/sji.12314 . (PMID: 10.1111/sji.1231425997925)
      Vergadi, E., Ieronymaki, E., Lyroni, K., Vaporidi, K., & Tsatsanis, C. (2017). Akt signaling pathway in macrophage activation and M1/M2 polarization. Journal of Immunology, 198(3), 1006–1014. https://doi.org/10.4049/jimmunol.1601515 . (PMID: 10.4049/jimmunol.1601515)
      Eljaszewicz, A., Kleina, K., Grubczak, K., Radzikowska, U., Zembko, P., Kaczmarczyk, P., Tynecka, M., Dworzanczyk, K., Naumnik, B., & Moniuszko, M. (2018). Elevated numbers of circulating very small embryonic-like stem cells (VSELs) and intermediate CD14++CD16+ monocytes in IgA nephropathy. Stem Cell Reviews and Reports, 14(5), 686–693. https://doi.org/10.1007/s12015-018-9840-y . (PMID: 10.1007/s12015-018-9840-y30022351)
      Cho, D. I., Kim, M. R., Jeong, H. Y., Jeong, H. C., Jeong, M. H., Yoon, S. H., Kim, Y. S., & Ahn, Y. (2014). Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Experimental & Molecular Medicine, 46, e70. https://doi.org/10.1038/emm.2013.135 . (PMID: 10.1038/emm.2013.135)
      Horwood, N. J. (2016). Macrophage polarization and bone formation: A review. Clinical Reviews in Allergy and Immunology, 51(1), 79–86. https://doi.org/10.1007/s12016-015-8519-2 . (PMID: 10.1007/s12016-015-8519-226498771)
      Wang, N., Liang, H., & Zen, K. (2014). Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Frontiers in Immunology, 5, 614. https://doi.org/10.3389/fimmu.2014.00614 . (PMID: 10.3389/fimmu.2014.00614255063464246889)
      Song, X., Xie, S., Lu, K., & Wang, C. (2015). Mesenchymal stem cells alleviate experimental asthma by inducing polarization of alveolar macrophages. Inflammation, 38(2), 485–492. https://doi.org/10.1007/s10753-014-9954-6 . (PMID: 10.1007/s10753-014-9954-624958014)
      Lambrecht, B. N., & Hammad, H. (2012). The airway epithelium in asthma. Nature Medicine, 18(5), 684–692. https://doi.org/10.1038/nm.2737 . (PMID: 10.1038/nm.273722561832)
      Hammad, H., & Lambrecht, B. N. (2015). Barrier epithelial cells and the control of type 2 immunity. Immunity, 43(1), 29–40. https://doi.org/10.1016/j.immuni.2015.07.007 . (PMID: 10.1016/j.immuni.2015.07.00726200011)
      Wang, M., Tan, G., Eljaszewicz, A., Meng, Y., Wawrzyniak, P., Acharya, S., Altunbulakli, C., Westermann, P., Dreher, A., Yan, L., Wang, C., Akdis, M., Zhang, L., Nadeau, K. C., & Akdis, C. A. (2019). Laundry detergents and detergent residue after rinsing directly disrupt tight junction barrier integrity in human bronchial epithelial cells. The Journal of Allergy and Clinical Immunology, 143(5), 1892–1903. https://doi.org/10.1016/j.jaci.2018.11.016 . (PMID: 10.1016/j.jaci.2018.11.01630500342)
      Xiao, C., Puddicombe, S. M., Field, S., Haywood, J., Broughton-Head, V., Puxeddu, I., et al. (2011). Defective epithelial barrier function in asthma. The Journal of Allergy and Clinical Immunology, 128(3), 549–556.e541-512. https://doi.org/10.1016/j.jaci.2011.05.038 . (PMID: 10.1016/j.jaci.2011.05.03821752437)
      Guida, G., & Riccio, A. M. (2019). Immune induction of airway remodeling. Seminars in Immunology, 46, 101346. https://doi.org/10.1016/j.smim.2019.101346 . (PMID: 10.1016/j.smim.2019.10134631734128)
      Qin, X. J., Zhang, G. S., Zhang, X., Qiu, Z. W., Wang, P. L., Li, Y. W., Li, W., Xie, Q. M., Ke, Y. H., Lee, J. J., & Shen, H. H. (2012). Protein tyrosine phosphatase SHP2 regulates TGF-β1 production in airway epithelia and asthmatic airway remodeling in mice. Allergy, 67(12), 1547–1556. https://doi.org/10.1111/all.12048 . (PMID: 10.1111/all.1204823057634)
      Ge, X., Bai, C., Yang, J., Lou, G., Li, Q., & Chen, R. (2013). Effect of mesenchymal stem cells on inhibiting airway remodeling and airway inflammation in chronic asthma. Journal of Cellular Biochemistry, 114(7), 1595–1605. https://doi.org/10.1002/jcb.24501 . (PMID: 10.1002/jcb.2450123334934)
      Ogulur, I., Gurhan, G., Aksoy, A., Duruksu, G., Inci, C., Filinte, D., Kombak, F. E., Karaoz, E., & Akkoc, T. (2014). Suppressive effect of compact bone-derived mesenchymal stem cells on chronic airway remodeling in murine model of asthma. International Immunopharmacology, 20(1), 101–109. https://doi.org/10.1016/j.intimp.2014.02.028 . (PMID: 10.1016/j.intimp.2014.02.02824613203)
      Urbanek, K., De Angelis, A., Spaziano, G., Piegari, E., Matteis, M., Cappetta, D., et al. (2016). Intratracheal Administration of Mesenchymal Stem Cells Modulates Tachykinin System, suppresses airway remodeling and reduces airway Hyperresponsiveness in an animal model. PLoS One, 11(7), e0158746. https://doi.org/10.1371/journal.pone.0158746 . (PMID: 10.1371/journal.pone.0158746274347194951036)
      Firinci, F., Karaman, M., Baran, Y., Bagriyanik, A., Ayyildiz, Z. A., Kiray, M., Kozanoglu, I., Yilmaz, O., Uzuner, N., & Karaman, O. (2011). Mesenchymal stem cells ameliorate the histopathological changes in a murine model of chronic asthma. International Immunopharmacology, 11(8), 1120–1126. https://doi.org/10.1016/j.intimp.2011.03.009 . (PMID: 10.1016/j.intimp.2011.03.00921439399)
      Araujo, B. B., Dolhnikoff, M., Silva, L. F., Elliot, J., Lindeman, J. H., Ferreira, D. S., et al. (2008). Extracellular matrix components and regulators in the airway smooth muscle in asthma. The European Respiratory Journal, 32(1), 61–69. https://doi.org/10.1183/09031936.00147807 . (PMID: 10.1183/09031936.0014780718321931)
      Januskevicius, A., Vaitkiene, S., Gosens, R., Janulaityte, I., Hoppenot, D., Sakalauskas, R., & Malakauskas, K. (2016). Eosinophils enhance WNT-5a and TGF-β1 genes expression in airway smooth muscle cells and promote their proliferation by increased extracellular matrix proteins production in asthma. BMC Pulmonary Medicine, 16(1), 94. https://doi.org/10.1186/s12890-016-0254-9 . (PMID: 10.1186/s12890-016-0254-9272974094906992)
      Kobayashi, T., Kim, H., Liu, X., Sugiura, H., Kohyama, T., Fang, Q., Wen, F. Q., Abe, S., Wang, X., Atkinson, J. J., Shipley, J. M., Senior, R. M., & Rennard, S. I. (2014). Matrix metalloproteinase-9 activates TGF-β and stimulates fibroblast contraction of collagen gels. American Journal of Physiology. Lung Cellular and Molecular Physiology, 306(11), L1006–L1015. https://doi.org/10.1152/ajplung.00015.2014 . (PMID: 10.1152/ajplung.00015.2014247057254042193)
      Hough, K. P., Curtiss, M. L., Blain, T. J., Liu, R. M., Trevor, J., Deshane, J. S., & Thannickal, V. J. (2020). Airway remodeling in asthma. Front Med (Lausanne), 7, 191. https://doi.org/10.3389/fmed.2020.00191 . (PMID: 10.3389/fmed.2020.00191)
      Allogeneic Human Cells (hMSC) Via Intravenous Delivery in Patients With Mild Asthma (ASTEC) (2017). https://clinicaltrials.gov/ct2/show/NCT03137199?term=msc&cond=Asthma&draw=2&rank=1 . Accessed December 9, 2020.
    • Contributed Indexing:
      Keywords: Asthma; Experimental asthma; Immune regulation; Mesenchymal stem cells; Stem cells
    • Publication Date:
      Date Created: 20210302 Date Completed: 20220303 Latest Revision: 20220727
    • Publication Date:
      20221213
    • Accession Number:
      PMC7919631
    • Accession Number:
      10.1007/s12015-021-10137-7
    • Accession Number:
      33649900