Effects of zinc and mercury on ROS-mediated oxidative stress-induced physiological impairments and antioxidant responses in the microalga Chlorella vulgaris.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Publication Information:
      Ahead of Print
    • Source:
      Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
    • Publication Information:
      Publication: <2013->: Berlin : Springer
      Original Publication: Landsberg, Germany : Ecomed
    • Abstract:
      The rapid growth of industrialization and urbanization results in deterioration of freshwater systems around the world, rescinding the ecological balance. Among many factors that lead to adverse effects in aquatic ecology, metals are frequently discharged into aquatic ecosystems from natural and anthropogenic sources. Metals are highly persistent and toxic substances in trace amounts and can potentially induce severe oxidative stress in aquatic organisms. In this study, adverse effects of the two metal elements zinc (maximum concentration of 167.25 mg/L) and mercury (104.2 mg/L) were examined using Chlorella vulgaris under acute and chronic exposure period (48 h and 7 days, respectively). The metal-induced adverse effects have been analyzed through photosynthetic pigment content, total protein content, reactive oxygen species (ROS) generation, antioxidant enzymatic activities, namely catalase and superoxide dismutase (SOD) along with morphological changes in C. vulgaris. Photosynthetic pigments were gradually reduced (~32-100% reduction) in a dose-dependent manner. Protein content was initially increased during acute (~8-12%) and chronic (~57-80%) exposure and decreased (~44-56%) at higher concentration of the two metals (80%). Under the two metal exposures, 5- to 7-fold increase in ROS generation indicated the induction of oxidative stress and subsequent modulations in antioxidant activities. SOD activity was varied with an initial increase (58-129%) followed by a gradual reduction (~3.7-79%), while ~1- to 12-fold difference in CAT activity was observed in all experimental condition (~83 to 1605%). A significant difference was observed in combined toxic exposure (Zn+Hg), while comparing the toxic endpoint data of individual metal exposure (Zn and Hg alone). Through this work, lethal effects caused by single and combined toxicity of zinc and mercury were assessed, representing the significance of appropriate monitoring system to trim down the release of metal contaminants into the aquatic ecosystems.
    • References:
      Ajitha V, Sreevidya CP, Kim JH, Bright Singh IS, Mohandas A, Lee J-S, Puthumana J (2019) Effect of metals of treated electroplating industrial effluents on antioxidant defense system in the microalga Chlorella vulgaris. Aquat Toxicol 217:105317. (PMID: 10.1016/j.aquatox.2019.105317)
      Andosch A, Affenzeller MJ, Lütz C, Lütz-Meindl U (2012) A freshwater green alga under chromium stress: ameliorating calcium effects on ultrastructure and photosynthesis in the unicellular model Micrasterias. J Plant Physiol 169:1489–1500. (PMID: 10.1016/j.jplph.2012.06.002)
      Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206. (PMID: 10.1111/j.1365-3040.1990.tb01304.x)
      Azevedo-Pereira HMVS, Soares AMVM (2010) Effects of mercury on growth, emergence, and behavior of Chironomus riparius Meigen (Diptera: Chironomidae). Arch Environ Contam Toxicol 59:216–224. (PMID: 10.1007/s00244-010-9482-9)
      Babu MY, Palanikumar L, Nagarani N, Devi VJ, Kumar SR, Ramakritinan CM, Kumaraguru AK (2014) Cadmium and copper toxicity in three marine macroalgae: evaluation of the biochemical responses and DNA damage. Environ Sci Pollut Res 21:9604–9616. (PMID: 10.1007/s11356-014-2999-0)
      Bajguz A (2010) An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress. Environ Exp Bot 68:175–179. (PMID: 10.1016/j.envexpbot.2009.11.003)
      Bajguz A (2000) Blockade of heavy metals accumulation in Chlorella vulgaris cells by 24-epibrassinolide. Plant Physiol Biochem 38:797–801. (PMID: 10.1016/S0981-9428(00)01185-2)
      Bajguz A, Piotrowska-Niczyporuk A (2013) Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiol Biochem 71:290–297. (PMID: 10.1016/j.plaphy.2013.08.003)
      Barbarino E, Lourenço SO (2005) An evaluation of methods for extraction and quantification of protein from marine macro- and microalgae. J Appl Phycol 17:447–460. (PMID: 10.1007/s10811-005-1641-4)
      Beyer W, Imlay J, Fridovich I (1991) Superoxide dismutases. pp. 221–253.
      Bidar G, Garçon G, Pruvot C, Dewaele D, Cazier F, Douay F, Shirali P (2007) Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: Plant metal concentration and phytotoxicity. Environ Pollut 147:546–553. (PMID: 10.1016/j.envpol.2006.10.013)
      Bischoff HW, Bold HC (1963) Phycological studies IV : some soil algae from enchanted rock and related algal species. University of Texas, Austin.
      Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351. (PMID: 10.1016/S0045-6535(99)00283-0)
      Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254.
      Branzini A, Gonzalez RS, Zubillaga M (2012) Absorption and translocation of copper, zinc and chromium by Sesbania virgata. J Environ Manag 102:50–54. (PMID: 10.1016/j.jenvman.2012.01.033)
      Cargnelutti D, Tabaldi LA, Spanevello RM, de Oliveira JG, Battisti V, Redin M, Linares CEB, Dressler VL, de Moraes Flores ÉM, Nicoloso FT, Morsch VM, Schetinger MRC (2006) Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere 65:999–1006. (PMID: 10.1016/j.chemosphere.2006.03.037)
      Çelekli A, Gültekin E, Bozkurt H (2016) Morphological and biochemical responses of Spirogyra setiformis exposed to cadmium. CLEAN 44:256–262.
      Chance B, Maehly AC (1955) Assay of catalases and peroxidases. Methods Enzymol 2:764–775. (PMID: 10.1016/S0076-6879(55)02300-8)
      Chen X, Zhu X, Li R, Yao H, Lu Z, Yang X (2012) Photosynthetic toxicity and oxidative damage induced by nano-Fe3O4 on Chlorella vulgaris in aquatic environment. Open J Ecol 2:21–28. (PMID: 10.4236/oje.2012.21003)
      Cheng J, Qiu H, Chang Z, Jiang Z, Yin W (2016) The effect of cadmium on the growth and antioxidant response for freshwater algae Chlorella vulgaris. Springerplus 5:1290. (PMID: 10.1186/s40064-016-2963-1)
      Chia MA, Lombardi AT, da Graça Gama Melão M, Parrish CC (2015) Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae). Aquat Toxicol 160:87–95. (PMID: 10.1016/j.aquatox.2015.01.002)
      Chongpraditnun P, Mori S, Chino M (1992) Excess copper induces a cytosolic Cu, Zn-superoxide dismutase in soybean root. Plant Cell Physiol 33:239–244. (PMID: 10.1093/oxfordjournals.pcp.a078246)
      Choudhary M, Jetley UK, Abash Khan M, Zutshi S, Fatma T (2007) Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicol Environ Saf 66:204–209. (PMID: 10.1016/j.ecoenv.2006.02.002)
      Chouteau C, Dzyadevych S, Chovelon J-M, Durrieu C (2004) Development of novel conductometric biosensors based on immobilised whole cell Chlorella vulgaris microalgae. Biosens Bioelectron 19:1089–1096. (PMID: 10.1016/j.bios.2003.10.012)
      Clijsters H, Cuypers A, Vangronsveld J (1999) Physiological responses to heavy metals in higher plants: defence against oxidative stress. Z Naturforsch C 54:730–734. (PMID: 10.1515/znc-1999-9-1018)
      Das K, Samanta L, Chainy GBN (2000) A modified spectrophotometric assay of superoxide dismutase using nitrite formation by superoxide radicals. Indian J Biochem Biophys 37:201–204.
      Dash A, Singh AP, Chaudhary BR, Singh SK, Dash D (2012) Effect of silver nanoparticles on growth of eukaryotic green algae. Nano-Micro Lett 4:158–165. (PMID: 10.1007/BF03353707)
      Davies AG (1974) The growth kinetics of Isochrysis galbana in cultures containing sublethal concentrations of mercuric chloride. J Mar Biol Assoc UK 54:157–169. (PMID: 10.1017/S002531540002213X)
      De Filippis LF, Hampp R, Ziegler H (1981) The effects of sublethal concentrations of zinc, cadmium and mercury on Euglena. Growth and pigments. Z Pflanzenphysiol 101:37–47. (PMID: 10.1016/S0044-328X(81)80059-1)
      De Filippis LF, Pallaghy CK (1976) The effect of sub-lethal concentrations of mercury and zinc on Chlorella. Z Pflanzenphysiol 79:323–335. (PMID: 10.1016/S0044-328X(76)80035-9)
      Dinesh Kumar S, Santhanam P, Ananth S, Shenbaga Devi A, Nandakumar R, Balaji Prasath B, Jeyanthi S, Jayalakshmi T, Ananthi P (2014) Effect of different dosages of zinc on the growth and biomass in five marine microalgae. Int J Fish Aquacult 6:1–8. (PMID: 10.5897/IJFA2013.0393)
      Dirilgen N (2011) Mercury and lead: assessing the toxic effects on growth and metal accumulation by Lemna minor. Ecotoxicol Environ Saf 74:48–54. (PMID: 10.1016/j.ecoenv.2010.09.014)
      di Toppi LS, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130. (PMID: 10.1016/S0098-8472(98)00058-6)
      Durrieu C, Guedri H, Fremion F, Volatier L (2011) Unicellular algae used as biosensors for chemical detection in Mediterranean lagoon and coastal waters. Res Microbiol 162:908–914. (PMID: 10.1016/j.resmic.2011.07.002)
      Ensibi C, Pérez-López M, Soler Rodríguez F, Míguez-Santiyán MP, Yahya MND, Hernández-Moreno D (2013) Effects of deltamethrin on biometric parameters and liver biomarkers in common carp (Cyprinus carpio L.). Environ Toxicol Pharmacol 36:384–391. (PMID: 10.1016/j.etap.2013.04.019)
      Fisher NS, Jones GJ, Nelson DM (1981) Effects of copper and zinc on growth, morphology, and metabolism of Asterionella japonica (Cleve). J Exp Mar Biol Ecol 51:37–56.
      Foster PL (1982) Metal resistances of chlorophyta from rivers polluted by heavy metals. Freshw Biol 12:41–61. (PMID: 10.1111/j.1365-2427.1982.tb00602.x)
      Franklin NM, Stauber JL, Lim RP, Petocz P (2002) Toxicity of metal mixtures to a tropical freshwater alga (Chlorella sp.): the effect of interactions between copper, cadmium, and zinc on metal cell binding and uptake. Environ Toxicol Chem 21:2412–2422. (PMID: 10.1002/etc.5620211121)
      Ge F, Xu Y, Zhu R, Yu F, Zhu M, Wong M (2010) Joint action of binary mixtures of cetyltrimethyl ammonium chloride and aromatic hydrocarbons on Chlorella vulgaris. Ecotoxicol Environ Saf 73:1689–1695. (PMID: 10.1016/j.ecoenv.2010.06.003)
      Gipps JF, Biro P (1978) The use of Chlorella vulgaris in a simple demonstration of heavy metal toxicity. J Biol Educ 12:207–214. (PMID: 10.1080/00219266.1978.9654198)
      Godbold DL (1991) Mercury-induced root damage in spruce seedlings. Water Air Soil Pollut 56:823–831. (PMID: 10.1007/BF00342319)
      Gold C, Feurtet-Mazel A, Coste M, Boudou A (2003) Impacts of Cd and Zn on the development of periphytic diatom communities in artificial streams located along a river pollution gradient. Arch Environ Contam Toxicol 44:189–197. (PMID: 10.1007/s00244-002-2024-3)
      Grantt E (2008) Handbook of phycological methods: developmental and cytological methods. Cambridge University Press.
      Greenfield SS (1942) Inhibitory effects of inorganic compounds on photosynthesis in Chlorella. Am J Bot 29:121–131. (PMID: 10.1002/j.1537-2197.1942.tb13979.x)
      Gupta M, Chandra P (1994) Lead accumulation and toxicity in Vallisneria spiralis (L.) and Hvdrilla vertieillata (l.f.). Royal J Environ Sci Health A 29:503–516.
      Halliwell B, Gutteridge JBC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, New York, p 936.
      Hannan PJ, Patouillet C (1972) Effect of mercury on algal growth rates. Biotechnol Bioeng 14:93–101. (PMID: 10.1002/bit.260140109)
      Harding JPC, Whitton BA (1976) Resistance to zinc of Stigeoclonium tenue in the field and the laboratory. Br Phycol J 11:417–426. (PMID: 10.1080/00071617600650471)
      Hutchinson T, Stokes P (1975) Heavy metal toxicity and algal bioassays, in: Water quality parameters, 19428-2959 edn. ASTM International, West Conshohocken, pp 320–324. (PMID: 10.1520/STP39020S)
      Imlay JA (2002) How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. AdvMicrob Physiol 46:111–153.
      Israr M, Sahi S, Datta R, Sarkar D (2006) Bioaccumulation and physiological effects of mercury in Sesbania drummondii. Chemosphere 65:591–598. (PMID: 10.1016/j.chemosphere.2006.02.016)
      Kamp-Nielsen L (1971) The effect of deleterious concentrations of mercury on the photosynthesis and growth of Chlorella pyrenoidosa. Physiol Plant 24:556–561. (PMID: 10.1111/j.1399-3054.1971.tb03535.x)
      Kang K-S, Lim C-J, Han T-J, Kim J-C, Jin C-D (1999) Changes in the isozyme composition of antioxidant enzymes in response to aminotriazole in leaves of Arabidopsis thaliana. J Plant Biol 42:187–193. (PMID: 10.1007/BF03030477)
      Kebeish R, El-Ayouty Y, Hussein A (2014) Effect of copper on growth, bioactive metabolites, antioxidant enzymes and photosynthesis-related gene transcription in Chlorella vulgaris. World J Biol Biol Sci 2:34–43.
      Knauert S, Knauer K (2008) The role of reactive oxygen species in copper toxicity to two fresh green algae. J Phycol 44:311–319. (PMID: 10.1111/j.1529-8817.2008.00471.x)
      Kumar D, Pandey LK, Gaur JP (2016) Metal sorption by algal biomass: from batch to continuous system. Algal Res 18:95–109. (PMID: 10.1016/j.algal.2016.05.026)
      Kumar KS, Dahms H-U, Won E-J, Lee J-S, Shin K-H (2015) Microalgae - a promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113:329–352. (PMID: 10.1016/j.ecoenv.2014.12.019)
      Kupper H, Kupper F, Spiller M (1998) In situ detection of heavy metal substituted chlorophylls in water plants. Photosynth Res 58:123–133. (PMID: 10.1023/A:1006132608181)
      Kupper H, Setlik I, Spiller M, Kupper FC, Prasil O (2002) Heavy metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. J Phycol 38:429–441.
      da Leitao MAS, Cardozo KHM, Pinto E, Colepicolo P (2003) PCB-induced oxidative stress in the unicellular marine dinoflagellate Lingulodinium polyedrum. Arch Environ Contam Toxicol 45:59–65. (PMID: 10.1007/s00244-002-0208-5)
      Li M, Hu C, Zhu Q, Chen L, Kong Z, Liu Z (2006) Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the microalga Pavlova viridis (Prymnesiophyceae). Chemosphere 62:565–572. (PMID: 10.1016/j.chemosphere.2005.06.029)
      Lichtenthaler HK (1987) [34] Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. pp. 350–382.
      Liu H, Li L, Yin C, Shan B (2008) Fraction distribution and risk assessment of heavy metals in sediments of Moshui Lake. J Environ Sci 20:390–397. (PMID: 10.1016/S1001-0742(08)62069-0)
      Lu L, Wu Y, Ding H, Zhang W (2015) The combined and second exposure effect of copper (II) and chlortetracycline on freshwater algae, Chlorella pyrenoidosa and Microcystis aeruginosa. Environ Toxicol Pharmacol 40:140–148. (PMID: 10.1016/j.etap.2015.06.006)
      Mallick N (2004) Copper-induced oxidative stress in the chlorophycean microalga Chlorella vulgaris: response of the antioxidant system. J Plant Physiol 161:591–597. (PMID: 10.1078/0176-1617-01230)
      Mallick N, Rai LC (1999) Response of the antioxidant systems of the nitrogen fixing cyanobacterium Anabaena doliolum to copper. J Plant Physiol 155:146–149. (PMID: 10.1016/S0176-1617(99)80158-8)
      Mallick S, Sinam G, Kumar Mishra R, Sinha S (2010) Interactive effects of Cr and Fe treatments on plants growth, nutrition and oxidative status in Zea mays L. Ecotoxicol Environ Saf 73:987–995. (PMID: 10.1016/j.ecoenv.2010.03.004)
      Mehta SK, Singh A, Gaur JP (2002) Kinetics of adsorption and uptake of Cu 2+ by Chlorella vulgaris: influence of pH, temperature, culture age, and cations. J Environ Sci Health A 37:399–414. (PMID: 10.1081/ESE-120002837)
      Melegari SP, Perreault F, Costa RHR, Popovic R, Matias WG (2013) Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquat Toxicol 142(143):431–440. (PMID: 10.1016/j.aquatox.2013.09.015)
      Mellado M, Contreras RA, González A, Dennett G, Moenne A (2012) Copper-induced synthesis of ascorbate, glutathione and phytochelatins in the marine alga Ulva compressa (Chlorophyta). Plant Physiol Biochem 51:102–108. (PMID: 10.1016/j.plaphy.2011.10.007)
      Michalak I, Chojnacka K (2010) Interactions of metal cations with anionic groups on the cell wall of the macroalga Vaucheria sp. Eng Life Sci 10:209–217. (PMID: 10.1002/elsc.200900039)
      Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039. (PMID: 10.1016/j.chemosphere.2006.03.033)
      Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. (PMID: 10.1016/S1360-1385(02)02312-9)
      Mo L-Y, Zhao D-N, Qin M, Qin L-T, Zeng H-H, Liang Y-P (2019) Joint toxicity of six common heavy metals to Chlorella pyrenoidosa. Environ Sci Pollut Res 26:30554–30560. (PMID: 10.1007/s11356-017-0837-x)
      Mochida K, Ito K, Harino H, Kakuno A, Fujii K (2006) Acute toxicity of pyrithione antifouling biocides and joint toxicity with copper to red sea bream (Pagrus major) and toy shrimp (Heptacarpus futilirostris). Environ Toxicol Chem 25:3058–3064. (PMID: 10.1897/05-688R.1)
      Morel NML, Rueter JC, Morel FMM (1978) Copper toxicity to Skeletonema costatum (Bacillariophyceae). J Phycol 14:43–48. (PMID: 10.1111/j.1529-8817.1978.tb00629.x)
      Morin S, Coste M (2006) Metal-induced shifts in the morphology of diatoms from the Riou Mort and Riou Viou streams (South West France). In: Acs E, Kiss KT, Padisak J, Szabo K (eds) Use of algae for monitoring rivers VI. Hungarian Algological Society, Göd, Hungary, Balatonfüred, pp 91–106.
      Muradoglu F, Gundogdu M, Ercisli S, Encu T, Balta F, Jaafar HZE, Zia-Ul-Haq M (2015) Cadmium toxicity affects chlorophyll a and b content, antixodiant enzyme activities and mineral nutrient accumulation in strawberry. Biol Res 48:11. (PMID: 10.1186/s40659-015-0001-3)
      Nugroho AP, Handayani NSN, Pramudita IGA (2017) Combined effects of copper and cadmium on Chlorella pyrenoidosa H.Chick: subcellular accumulation, distribution, and growth inhibition. Toxicol Environ Chem 99:1368–1377. (PMID: 10.1080/02772248.2017.1378888)
      Nuzzi R (1972) Toxicity of mercury to phytoplankton. Nature 237:38–40. (PMID: 10.1038/237038a0)
      Omar H (2002) Bioremoval of zinc ions by Scenedesmus obliquus and Scenedesmus quadricauda and its effect on growth and metabolism. Int Biodeterior Biodegrad 50:95–100. (PMID: 10.1016/S0964-8305(02)00048-3)
      Öncel I, Keleş Y, Üstün A (2000) Interactive effects of temperature and heavy metal stress on the growth and some biochemical compounds in wheat seedlings. Environ Pollut 107:315–320. (PMID: 10.1016/S0269-7491(99)00177-3)
      Osman ME, El-Naggar AH, El-Sheekh MM, El-Mazally EE (2004) Differential effects of Co 2+ and Ni 2+ on protein metabolism in Scenedesmus obliquus and Nitzschia perminuta. Environ Toxicol Pharmacol 16:169–178. (PMID: 10.1016/j.etap.2003.12.004)
      Ouyang H, Kong X, He W, Qin N, He Q, Wang Y, Wang R, Xu F (2012) Effects of five heavy metals at sub-lethal concentrations on the growth and photosynthesis of Chlorella vulgaris. Chin Sci Bull 57:3363–3370. (PMID: 10.1007/s11434-012-5366-x)
      Pinto E, Sigaud-kutner TCS, Leitão MAS, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39:1008–1018. (PMID: 10.1111/j.0022-3646.2003.02-193.x)
      Pokora W, Tukaj Z (2010) The combined effect of anthracene and cadmium on photosynthetic activity of three Desmodesmus (Chlorophyta) species. Ecotoxicol Environ Saf 73:1207–1213. (PMID: 10.1016/j.ecoenv.2010.06.013)
      Ponmani T, Guo R, Ki J-S (2015) A novel cyclophilin gene from the dinoflagellate Prorocentrum minimum and its possible role in the environmental stress response. Chemosphere 139:260–267. (PMID: 10.1016/j.chemosphere.2015.06.036)
      Prasad DDK, Prasad ARK (1987) Altered δ-aminolevulinic acid metabolism by lead and mercury in germinating seedlings of Bajra (Pennisetum typhoideum). J Plant Physiol 127:241–249. (PMID: 10.1016/S0176-1617(87)80143-8)
      Prasad MNV, Drej K, Skawinska A, Stratkaka K (1998) Toxicity of cadmium and copper in Chlamydomonas reinhardtii wild-type (WT 2137) and cell wall deficient mutant strain (CW 15). Bull Environ Contam Toxicol 60:306–311. (PMID: 10.1007/s001289900626)
      Qian H, Li J, Pan X, Sun L, Lu T, Ran H, Fu Z (2011) Combined effect of copper and cadmium on heavy metal ion bioaccumulation and antioxidant enzymes induction in Chlorella vulgaris. Bull Environ Contam Toxicol 87:512–516. (PMID: 10.1007/s00128-011-0365-1)
      Qian H, Li J, Sun L, Chen W, Sheng GD, Liu W, FuZ (2009) Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription. Aquat Toxicol 94:56–61. (PMID: 10.1016/j.aquatox.2009.05.014)
      Qu R, Wang X, Liu Z, Yan Z, Wang Z (2013) Development of a model to predict the effect of water chemistry on the acute toxicity of cadmium to Photobacterium phosphoreum. J Hazard Mater 262:288–296. (PMID: 10.1016/j.jhazmat.2013.08.039)
      Rai LC, Gaur JP, Kumar HD (1981a) Protective effects of certain environmental factors on the toxicity of zinc, mercury, and methylmercury to Chlorella vulgaris. Environ Res 25:250–259. (PMID: 10.1016/0013-9351(81)90026-8)
      Rai LC, Gaur JP, Kumar HD (1981b) Phycology and heavy-metal pollution. Biol Rev 56:99–151. (PMID: 10.1111/j.1469-185X.1981.tb00345.x)
      Rai LC, Singh AK, Mallick N (1991) Studies on photosynthesis, the associated electron transport system and some physiological variables of Chlorella vulgaris under heavy metal stress. J Plant Physiol 137:419–424. (PMID: 10.1016/S0176-1617(11)80310-X)
      Rai UN, Singh NK, Upadhyay AK, Verma S (2013) Chromate tolerance and accumulation in Chlorella vulgaris L.: role of antioxidant enzymes and biochemical changes in detoxification of metals. Bioresour Technol 136:604–609. (PMID: 10.1016/j.biortech.2013.03.043)
      Reddy MK, Alexander-Lindo RL, Nair MG (2005) Relative inhibition of lipid peroxidation, cyclooxygenase enzymes, and human tumor cell proliferation by natural food colors. J Agric Food Chem 53:9268–9273. (PMID: 10.1021/jf051399j)
      Rocchetta I, Mazzuca M, Conforti V, Ruiz L, Balzaretti V, de Molina del Carmen M (2006) Effect of chromium on the fatty acid composition of two strains of Euglena gracilis. Environ Pollut 141:353–358. (PMID: 10.1016/j.envpol.2005.08.035)
      Romero-Puertas MC, Palma JM, Gómez M, Del Río LA, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25:677–686. (PMID: 10.1046/j.1365-3040.2002.00850.x)
      Rosko JJ, Rachlin JW (1977) The effect of cadium, copper, mercury, zinc and lead on cell division, growth, and chlorophyll a content of the chlorophyte Chlorella vulgaris. Bull Torrey Bot Club 104:226. (PMID: 10.2307/2484302)
      Saavedra R, Muñoz R, Taboada ME, Vega M, Bolado S (2018) Comparative uptake study of arsenic, boron, copper, manganese and zinc from water by different green microalgae. Bioresour Technol 263:49–57. (PMID: 10.1016/j.biortech.2018.04.101)
      Samuel K, Bose S (1987) Bleaching of photosynthetic pigments in Chlorella protothecoides grown in the presence of SANDOZ 9785 (4-chloro-5-dimethylamino-2-phenyl-3 (2H) pyridazinone). J Biosci 12:399–404. (PMID: 10.1007/BF02898589)
      Sathasivam R, Ebenezer V, Guo R, Ki J-S (2016) Physiological and biochemical responses of the freshwater green algae Closterium ehrenbergii to the common disinfectant chlorine. Ecotoxicol Environ Saf 133:501–508. (PMID: 10.1016/j.ecoenv.2016.08.004)
      Schiariti A, Juárez ÁB, Rodríguez MC (2004) Effects of sublethal concentrations of copper on three strains of green microalgae under autotrophic and mixotrophic culture conditions. Arch Hydrobiol Suppl 114:143–157.
      Shakya K, Chettri MK, Sawidis T (2007) Impact of heavy metals (copper, zinc, and lead) on the chlorophyll content of some mosses. Arch Environ Contam Toxicol 54:412–421. (PMID: 10.1007/s00244-007-9060-y)
      Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753. (PMID: 10.1016/j.envint.2005.02.003)
      Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Aust J Bot 2012:1–26.
      Shehata FHA, Whitton BA (1982) Zinc tolerance in strains of the blue-green alga Anacystis nidulans. Br Phycol J 17:5–12. (PMID: 10.1080/00071618200650021)
      Sies H (1999) Glutathione and its role in cellular functions. Free Radic Biol Med 27:916–921. (PMID: 10.1016/S0891-5849(99)00177-X)
      Soto P, Gaete H, Hidalgo ME (2011) Assessment of catalase activity, lipid peroxidation, chlorophyll a, and growth rate in the freshwater green algae Pseudokirchneriella subcapitata exposed to copper and zinc. Lat Am J Aquat Res 39:280–285. (PMID: 10.3856/vol39-issue2-fulltext-9)
      Su L, Zhang X, Yuan X, Zhao Y, Zhang D, Qin W (2012) Evaluation of joint toxicity of nitroaromatic compounds and copper to Photobacterium phosphoreum and QSAR analysis. J Hazard Mater 241/242:450–455. (PMID: 10.1016/j.jhazmat.2012.09.065)
      Sunda W (1975) The relationship between cupric ion activity and the toxicity of copper to phytoplankton. Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, Woods Hole. (PMID: 10.1575/1912/1275)
      Takamura N, Kasai F, Watanabe MM (1990) Unique response of cyanophyceae to copper. J Appl Phycol 2:293–296. (PMID: 10.1007/BF02180917)
      Takamura N, Kasai F, Watanabe MM (1989) Effects of Cu, Cd and Zn on photosynthesis of freshwater benthic algae. J Appl Phycol 1:39–52. (PMID: 10.1007/BF00003534)
      Tingle LE, Pavlat WA, Cameron IL (1973) Sublethal cytotoxic effects of mercuric chloride on the ciliate Tetrahymena pyriformis. J Protozool 20:301–304. (PMID: 10.1111/j.1550-7408.1973.tb00882.x)
      di Toppi LS, Musetti R, Marabottini R, Corradi MG, Vattuone Z, Favali MA, Badiani M (2004) Responses of Xanthoria parietina thalli to environmentally relevant concentrations of hexavalent chromium. Funct Plant Biol 31:329–338. (PMID: 10.1071/FP03171)
      Tripathi BN, Gaur JP (2006) Physiological behavior of Scenedesmus sp. during exposure to elevated levels of Cu and Zn and after with drawal of metal stress. Protoplasma 229:1–9. (PMID: 10.1007/s00709-006-0196-9)
      Tukaj S, Tukaj Z (2010) Distinct chemical contaminants induce the synthesis of Hsp70 proteins in green microalgae Desmodesmus subspicatus: heat pretreatment increases cadmium resistance. J Therm Biol 35:239–244. (PMID: 10.1016/j.jtherbio.2010.05.007)
      Van Baalen C, O’Donnell R (1978) Isolation of a nickel-dependent blue-green alga. J Gen Microbiol 105:351–353. (PMID: 10.1099/00221287-105-2-351)
      Volland S, Andosch A, Milla M, Stöger B, Lütz C, Lütz-Meindl U (2011) Intracellular metal compartmentalization in the green algal model system Micrasterias denticulata (Streptophyta) measured by transmission electron microscopy-coupled electron energy loss spectroscopy. J Physiol 47:565–579.
      Volland S, Bayer E, Baumgartner V, Andosch A, Lütz C, Sima E, Lütz-Meindl U (2014) Rescue of heavy metal effects on cell physiology of the algal model system Micrasterias by divalent ions. J Plant Physiol 171:154–163. (PMID: 10.1016/j.jplph.2013.10.002)
      Volland S, Lütz C, Michalke B, Lütz-Meindl U (2012) Intracellular chromium localization and cell physiology response in the unicellular alga Micrasterias. Aquat Toxicol 109:59–69. (PMID: 10.1016/j.aquatox.2011.11.013)
      Wan Maznah WO, Al-Fawwaz AT, Surif M (2012) Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosoprtion on the growth and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang, Malaysia. J Environ Sci 24:1386–1393. (PMID: 10.1016/S1001-0742(11)60931-5)
      Wang C, Wang X, Su R, Liang S, Yang S (2011) No detected toxic concentrations in in situ algal growth inhibition tests-a convenient approach to aquatic ecotoxicology. Ecotoxicol Environ Saf 74:225–229. (PMID: 10.1016/j.ecoenv.2010.10.013)
      Wang L, Kang Y, Liang S, Chen D, Zhang Q, Zeng L, Luo J, Jiang F (2018) Synergistic effect of co-exposure to cadmium (II) and 4-n-nonylphenol on growth inhibition and oxidative stress of Chlorella sorokiniana. Ecotoxicol Environ Saf 154:145–153. (PMID: 10.1016/j.ecoenv.2018.02.039)
      Winterbourn CC (1982) Superoxide dependent formation of hydroxyl radicals in the presence of iron salts is a feasible source of hydroxyl radicals in vivo. Biochem J Lett 205:461–463.
      Wu S, Zhang H, Yu X, Qiu L (2014) Toxicological responses of Chlorella vulgaris to dichloromethane and dichloroethane. Environ Eng Sci 31:9–17. (PMID: 10.1089/ees.2013.0038)
      Wu T-M, Lee T-M (2008) Regulation of activity and gene expression of antioxidant enzymes in Ulva fasciata Delile (Ulvales, Chlorophyta) in response to excess copper. Phycologia 47:346–360. (PMID: 10.2216/PH07-77.1)
      Xu Y, Feng L, Jeffrey PD, Shi YG, Morel FMM (2008) Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452:56–61. (PMID: 10.1038/nature06636)
      Yang Y, Zhang L, Huang X, Zhou Y, Quan Q, Li Y, Zhu X (2020) Response of photosynthesis to different concentrations of heavy metals in Davidia involucrata. PLoS One 15:e0228563. (PMID: 10.1371/journal.pone.0228563)
      Zeb B, Ping Z, Mahmood Q, Lin Q, Pervez A, Irshad M, Bilal M, Bhatti ZA, Shaheen S (2017) Assessment of combined toxicity of heavy metals from industrial wastewaters on Photobacterium phosphoreum T3S. Appl Water Sci 7:2043–2050. (PMID: 10.1007/s13201-016-0385-4)
      Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani NR, McHenry MP (2016) Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manag 181:817–831. (PMID: 10.1016/j.jenvman.2016.06.059)
      Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101:1–9. (PMID: 10.1016/j.jinorgbio.2006.05.011)
    • Grant Information:
      SES/53A/2014-15/04 University Grants Commission (UGC), Government of India under Basic Scientific Research (BSR) Programme
    • Contributed Indexing:
      Keywords: Acute and chronic exposure; Antioxidant enzymes; Metal pollution; Photosynthetic pigment content; ROS generation; Single and combined effects
    • Publication Date:
      Date Created: 20210225 Latest Revision: 20240222
    • Publication Date:
      20240223
    • Accession Number:
      10.1007/s11356-021-12950-6
    • Accession Number:
      33629160