Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Arabidopsis thaliana 3-mercaptopyruvate sulfurtransferases interact with and are protected by reducing systems.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: Elsevier Inc. on behalf of American Society for Biochemistry and Molecular Biology Country of Publication: United States NLM ID: 2985121R Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1083-351X (Electronic) Linking ISSN: 00219258 NLM ISO Abbreviation: J Biol Chem Subsets: MEDLINE
- Publication Information:
Publication: 2021- : [New York, NY] : Elsevier Inc. on behalf of American Society for Biochemistry and Molecular Biology
Original Publication: Baltimore, MD : American Society for Biochemistry and Molecular Biology
- Subject Terms:
- Abstract:
The formation of a persulfide group (-SSH) on cysteine residues has gained attention as a reversible posttranslational modification contributing to protein regulation or protection. The widely distributed 3-mercaptopyruvate sulfurtransferases (MSTs) are implicated in the generation of persulfidated molecules and H 2 S biogenesis through transfer of a sulfane sulfur atom from a suitable donor to an acceptor. Arabidopsis has two MSTs, named STR1 and STR2, but they are poorly characterized. To learn more about these enzymes, we conducted a series of biochemical experiments including a variety of possible reducing systems. Our kinetic studies, which used a combination of sulfur donors and acceptors revealed that both MSTs use 3-mercaptopyruvate efficiently as a sulfur donor while thioredoxins, glutathione, and glutaredoxins all served as high-affinity sulfane sulfur acceptors. Using the redox-sensitive GFP (roGFP2) as a model acceptor protein, we showed that the persulfide-forming MSTs catalyze roGFP2 oxidation and more generally trans-persulfidation reactions. However, a preferential interaction with the thioredoxin system and glutathione was observed in case of competition between these sulfur acceptors. Moreover, we observed that MSTs are sensitive to overoxidation but are protected from an irreversible inactivation by their persulfide intermediate and subsequent reactivation by thioredoxins or glutathione. This work provides significant insights into Arabidopsis STR1 and STR2 catalytic properties and more specifically emphasizes the interaction with cellular reducing systems for the generation of H 2 S and glutathione persulfide and reactivation of an oxidatively modified form.
Competing Interests: Conflict of interest The authors declare that they have no conflicts of interest with the content of this article.
(Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.)
- References:
Plant Physiol. 2014 May;165(1):92-104. (PMID: 24692429)
Sci Rep. 2015 Oct 06;5:14774. (PMID: 26437775)
Chem Rev. 2018 Feb 14;118(3):1253-1337. (PMID: 29112440)
Proc Natl Acad Sci U S A. 2020 Jan 7;117(1):741-751. (PMID: 31871212)
FEBS Open Bio. 2015 Oct 08;5:832-43. (PMID: 26605137)
Cell Mol Life Sci. 2009 Aug;66(15):2539-57. (PMID: 19506802)
J Biol Chem. 2014 Nov 7;289(45):30901-10. (PMID: 25225291)
J Biol Chem. 2011 Mar 4;286(9):7548-57. (PMID: 21189252)
Plant Cell. 2012 Nov;24(11):4621-34. (PMID: 23144183)
Histochem Cell Biol. 1998 Sep;110(3):243-50. (PMID: 9749958)
Plant Physiol. 2015 May;168(1):334-42. (PMID: 25810097)
Physiol Plant. 2016 Jul;157(3):352-66. (PMID: 27105581)
Eur J Biochem. 2000 Jan;267(1):145-54. (PMID: 10601861)
Sci Signal. 2009 Nov 10;2(96):ra72. (PMID: 19903941)
J Exp Bot. 2011 Aug;62(13):4481-93. (PMID: 21624977)
Sci Signal. 2011 Dec 13;4(203):ra86. (PMID: 22169477)
Nat Commun. 2017 Oct 27;8(1):1177. (PMID: 29079736)
Biol Chem. 2002 Sep;383(9):1363-72. (PMID: 12437129)
J Exp Bot. 2017 Oct 13;68(17):4915-4927. (PMID: 28992305)
Eur J Biochem. 2000 Sep;267(17):5621-30. (PMID: 10951223)
Sci Adv. 2020 Jan 01;6(1):eaax8358. (PMID: 31911946)
J Exp Bot. 2019 Aug 19;70(16):4139-4154. (PMID: 31055601)
Plant Physiol. 2016 Mar;170(3):1284-99. (PMID: 26672074)
Front Plant Sci. 2013 Dec 18;4:518. (PMID: 24385978)
Redox Biol. 2020 Sep;36:101598. (PMID: 32521506)
Mol Biol Evol. 2003 Sep;20(9):1564-74. (PMID: 12832624)
Cell Mol Life Sci. 2017 Apr;74(8):1391-1412. (PMID: 27844098)
Plant Cell Physiol. 2000 Apr;41(4):465-76. (PMID: 10845460)
Front Plant Sci. 2013 Apr 29;4:105. (PMID: 23641245)
Free Radic Biol Med. 2016 Aug;97:136-147. (PMID: 27242269)
Sci Rep. 2017 Sep 5;7(1):10459. (PMID: 28874874)
Eur J Biochem. 2000 Sep;267(17):5571-9. (PMID: 10951216)
Plant Cell. 2020 Apr;32(4):1000-1017. (PMID: 32024687)
FEBS Lett. 2001 Jul 6;500(3):153-6. (PMID: 11445076)
Antioxidants (Basel). 2018 Oct 13;7(10):. (PMID: 30322144)
Arch Biochem Biophys. 2011 Dec 15;516(2):146-53. (PMID: 22001739)
J Microsc. 2000 Jun;198(Pt 3):162-73. (PMID: 10849194)
Chem Soc Rev. 2016 Nov 7;45(22):6108-6117. (PMID: 27167579)
Biochem J. 2011 Nov 1;439(3):479-85. (PMID: 21732914)
Plant Physiol. 2004 Jun;135(2):916-26. (PMID: 15181206)
J Biol Chem. 2013 Jul 5;288(27):20002-13. (PMID: 23698001)
J Biol Chem. 2012 Aug 31;287(36):30874-84. (PMID: 22810225)
Sci Adv. 2016 Jan 22;2(1):e1500968. (PMID: 26844296)
Front Microbiol. 2019 Feb 20;10:298. (PMID: 30873134)
Sci Rep. 2017 Jan 12;7:40227. (PMID: 28079151)
Cell Chem Biol. 2018 Apr 19;25(4):447-459.e4. (PMID: 29429900)
J Exp Bot. 2006;57(8):1685-96. (PMID: 16720602)
Free Radic Biol Med. 2015 Dec;89:662-7. (PMID: 26454077)
Plant J. 2007 Dec;52(5):973-86. (PMID: 17892447)
J Biol Chem. 2014 Dec 12;289(50):34543-56. (PMID: 25336638)
J Biol Chem. 2020 May 8;295(19):6299-6311. (PMID: 32179647)
Br J Pharmacol. 2019 Feb;176(4):607-615. (PMID: 29748969)
New Phytol. 2020 May;226(4):967-977. (PMID: 31032955)
Cell Metab. 2019 Dec 3;30(6):1152-1170.e13. (PMID: 31735592)
Plant Physiol. 2010 Feb;152(2):656-69. (PMID: 19955263)
Sci Rep. 2016 Jul 14;6:29808. (PMID: 27411966)
Antioxid Redox Signal. 2009 Apr;11(4):703-14. (PMID: 18855522)
Cells. 2019 Aug 04;8(8):. (PMID: 31382676)
Front Plant Sci. 2013 Dec 16;4:506. (PMID: 24379821)
EMBO Rep. 2002 Aug;3(8):741-6. (PMID: 12151332)
Science. 2008 Oct 24;322(5901):587-90. (PMID: 18948540)
J Med Genet. 2015 Aug;52(8):532-40. (PMID: 25787132)
J Exp Bot. 2019 Aug 19;70(16):4251-4265. (PMID: 31087094)
Annu Rev Plant Biol. 2011;62:157-84. (PMID: 21370978)
Chem Sci. 2016 May 25;7(5):3414-3426. (PMID: 27170841)
Nucleic Acids Res. 2009 Mar;37(4):1335-52. (PMID: 19151091)
- Contributed Indexing:
Keywords: 3-mercaptopyruvate; cysteine; glutathione; hydrogen sulfide; persulfide; sulfurtransferase; thioredoxin
- Accession Number:
0 (Arabidopsis Proteins)
0 (Disulfides)
0 (glutathione persulfide)
70FD1KFU70 (Sulfur)
EC 2.8.1.- (Sulfurtransferases)
EC 2.8.1.2 (3-mercaptopyruvate sulphurtransferase)
GAN16C9B8O (Glutathione)
YY9FVM7NSN (Hydrogen Sulfide)
- Publication Date:
Date Created: 20210220 Date Completed: 20210827 Latest Revision: 20210827
- Publication Date:
20221213
- Accession Number:
PMC7995614
- Accession Number:
10.1016/j.jbc.2021.100429
- Accession Number:
33609525
No Comments.