Menu
×
Baxter-Patrick James Island
Closed
Phone: (843) 795-6679
West Ashley Library
Closed
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed
Phone: (843) 805-6888
Village Library
Closed
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed
Phone: (843) 889-3300
Otranto Road Library
Closed
Phone: (843) 572-4094
Mt. Pleasant Library
Closed
Phone: (843) 849-6161
McClellanville Library
Closed
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed
Phone: (843) 744-2489
John's Island Library
Closed
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
Closed
Phone: (843) 869-2355
Dorchester Road Library
Closed
Phone: (843) 552-6466
John L. Dart Library
Closed
Phone: (843) 722-7550
Main Library
2 p.m. – 5 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Today's Hours
Baxter-Patrick James Island
Closed
Phone: (843) 795-6679
West Ashley Library
Closed
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed
Phone: (843) 805-6888
Village Library
Closed
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed
Phone: (843) 889-3300
Otranto Road Library
Closed
Phone: (843) 572-4094
Mt. Pleasant Library
Closed
Phone: (843) 849-6161
McClellanville Library
Closed
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed
Phone: (843) 744-2489
John's Island Library
Closed
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
Closed
Phone: (843) 869-2355
Dorchester Road Library
Closed
Phone: (843) 552-6466
John L. Dart Library
Closed
Phone: (843) 722-7550
Main Library
2 p.m. – 5 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
POLR2A blocks osteoclastic bone resorption and protects against osteoporosis by interacting with CREB1.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Liu C;Liu C; Han Y; Han Y; Zhao X; Zhao X; Li B; Li B; Li B; Xu L; Xu L; Li D; Li D; Li G; Li G
- Source:
Journal of cellular physiology [J Cell Physiol] 2021 Jul; Vol. 236 (7), pp. 5134-5146. Date of Electronic Publication: 2021 Feb 17.- Publication Type:
Journal Article; Research Support, Non-U.S. Gov't- Language:
English - Source:
- Additional Information
- Source: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 0050222 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-4652 (Electronic) Linking ISSN: 00219541 NLM ISO Abbreviation: J Cell Physiol Subsets: MEDLINE
- Publication Information: Publication: New York, NY : Wiley-Liss
Original Publication: Philadelphia, Wistar Institute of Anatomy and Biology. - Subject Terms: Bone Resorption/*prevention & control ; Cyclic AMP Response Element-Binding Protein/*biosynthesis ; DNA-Directed RNA Polymerases/*metabolism ; Osteoporosis/*prevention & control; Animals ; Bone Resorption/pathology ; DNA-Directed RNA Polymerases/genetics ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Osteoclasts/cytology ; Osteogenesis/physiology ; Osteoporosis/pathology ; RNA Interference ; RNA, Small Interfering/genetics ; Signal Transduction/physiology ; Transcription, Genetic/genetics
- Abstract: Bone-resorbing osteoclasts significantly contribute to osteoporosis, and understanding the mechanisms of osteoclastogenesis is crucial for developing new drugs to treat diseases associated with bone loss. Here, we report that POLR2A is upregulated during osteoclastogenesis. Functional analyses showed that the inhibition of POLR2A decreased osteoclastogenesis, whereas the overexpression of POLR2A had completely opposite effects in vitro. Notably, the osteoclast-specific deletion of POLR2A blocks bone resorption in vivo. Furthermore, POLR2A loss-of-function suppresses estrogen deficiency-induced bone resorption. Mechanistically, POLR2A regulates the assembly of CREB1 on the regulatory elements of its target genes. Collectively, using genetic, pharmacological, and disease mouse models, we have identified a previously undescribed protein that interacts with CREB1 to regulate osteoclastic bone resorption.
(© 2020 Wiley Periodicals LLC.) - References: Azuma, Y., Kaji, K., Katogi, R., Takeshita, S., & Kudo, A. (2000). Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. Journal of Biological Chemistry, 275(7), 4858-4864. https://doi.org/10.1074/jbc.275.7.4858.
Body, J. J., Bergmann, P., Boonen, S., Boutsen, Y., Devogelaer, J. P., Goemaere, S., Kaufman, J. M., Rozenberg S., Reginster J. Y. (2010). Evidence-based guidelines for the pharmacological treatment of postmenopausal osteoporosis: A consensus document by the Belgian Bone Club. Osteoporosis International, 21(10), 1657-1680. https://doi.org/10.1007/s00198-010-1223-4.
Chai, Y., Tan, F., Ye, S., Liu, F., & Fan, Q. (2019). Identification of core genes and prediction of miRNAs associated with osteoporosis using a bioinformatics approach. Oncology Letters, 17(1), 468-481. https://doi.org/10.3892/ol.2018.9508.
Chen, P., Li, Z., & Hu, Y. (2016). Prevalence of osteoporosis in China: A meta-analysis and systematic review. BMC Public Health, 16(1), 1039. https://doi.org/10.1186/s12889-016-3712-7.
Chu, Y., Zhao, Z., Sant, D. W., Zhu, G., Greenblatt, S. M., Liu, L., Wang, J., Cao Z., Tho J. C., Chen S., Liu X., Zhang P., Maciejewski J. P., Nimer S., Wang G., Yuan W., Yang F. C., Xu M. (2018). Tet2 regulates osteoclast differentiation by interacting with Runx1 and maintaining genomic 5-hydroxymethylcytosine (5hmC). Genomics, Proteomics & Bioinformatics/Beijing Genomics Institute, 16(3), 172-186. https://doi.org/10.1016/j.gpb.2018.04.005.
Clark, V. E., Harmancı, A. S., Bai, H., Youngblood, M. W., Lee, T. I., Baranoski, J. F., Ercan-Sencicek, A. G., Abraham B. J., Weintraub A. S., Hnisz D., Simon M., Krischek B., Erson-Omay E. Z., Henegariu O., Carrión-Grant G., Mishra-Gorur K., Durán D., Goldmann J. E., Schramm J., … Günel M. (2016). Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas. Nature Genetics, 48(10), 1253-1259. https://doi.org/10.1038/ng.3651.
Gee, J. M., Smith, N. A., Fernandez, F. R., Economo, M. N., Brunert, D., Rothermel, M., Morris, S. C., Talbot A., Palumbos S., Ichida J.M., Shepherd J.D., West P. J., Wachowiak M., Capecchi M. R., Wilcox K. S., White J. A., Tvrdik P. (2014). Imaging activity in neurons and glia with a Polr2a-based and cre-dependent GCaMP5G-IRES-tdTomato reporter mouse. Neuron, 83(5), 1058-1072. https://doi.org/10.1016/j.neuron.2014.07.024.
Herault, O., Colombat, P., Domenech, J., Degenne, M., Bremond, J. L., Sensebe, L., Bernard, M. C., Binet C. (1999). A rapid single-laser flow cytometric method for discrimination of early apoptotic cells in a heterogenous cell population. British Journal of Haematology, 104(3), 530-537. https://doi.org/10.1046/j.1365-2141.1999.01203.x.
Hui-Ying, X., Da-Hong, Z., Li-Juan, J., & Xiao-Jie, L. (2016). Anticancer opportunity created by loss of tumor suppressor genes. Technology in Cancer Research & Treatment, 15(6), 729-731. https://doi.org/10.1177/1533034615604798.
Inoue, K., Deng, Z., Chen, Y., Giannopoulou, E., Xu, R., Gong, S., Greenblatt, M. B., Mangala L. S., Lopez-Berestein G., Kirsch D. G., Sood A. K., Zhao L., Zhao B. (2018). Bone protection by inhibition of microRNA-182. Nature Communications, 9(1), 4108. https://doi.org/10.1038/s41467-018-06446-0.
Kim, J. H., Kim, K., Kim, I., Seong, S., Lee, K. B., & Kim, N. (2018). BCAP promotes osteoclast differentiation through regulation of the p38-dependent CREB signaling pathway. Bone, 107, 188-195. https://doi.org/10.1016/j.bone.2017.12.005.
Kim, M. K., Kwon, J. O., Song, M. K., Kim, B., Kim, H., Lee, Z. H., Koo, S.H., Kim H. H. (2019). Salt-inducible kinase 1 regulates bone anabolism via the CRTC1-CREB-Id1 axis. Cell Death & Disease, 10(11), 826. https://doi.org/10.1038/s41419-019-1915-4.
Li, B. X., & Xiao, X. (2009). Discovery of a small-molecule inhibitor of the KIX-KID interaction. ChemBioChem, 10(17), 2721-2724. https://doi.org/10.1002/cbic.200900552.
Liu, Y., Zhang, X., Han, C., Wan, G., Huang, X., Ivan, C., Jiang, D., Rodriguez-Aguayo C., Lopez-Berestein G., Rao P. H., Maru D. M., Pahl A., He X., Sood A. K., Ellis L. M., Anderl J., Lu X. (2015). TP53 loss creates therapeutic vulnerability in colorectal cancer. Nature, 520(7549), 697-701. https://doi.org/10.1038/nature14418.
Manolagas, S. C. (1995). Role of cytokines in bone resorption. Bone, 17(2 Suppl), 63s-67s. https://doi.org/10.1016/8756-3282(95)00180-l.
Miller, C. H., Smith, S. M., Elguindy, M., Zhang, T., Xiang, J. Z., Hu, X., Ivashkiv, L. B., Zhao B. (2016). RBP-J-regulated miR-182 promotes TNF-α-induced osteoclastogenesis. Journal of Immunology, 196(12), 4977-4986. https://doi.org/10.4049/jimmunol.1502044.
Montminy, M. R., & Bilezikjian, L. M. (1987). Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature, 328(6126), 175-178. https://doi.org/10.1038/328175a0.
Montminy, M. R., Sevarino, K. A., Wagner, J. A., Mandel, G., & Goodman, R. H. (1986). Identification of a cyclic-AMP-responsive element within the rat somatostatin gene. Proceedings of the National Academy of Sciences of the United States of America, 83(18), 6682-6686. https://doi.org/10.1073/pnas.83.18.6682.
Negishi-Koga, T., Gober, H. J., Sumiya, E., Komatsu, N., Okamoto, K., Sawa, S., Suematsu, A., Suda T., Sato K., Takai T., Takayanagi H. (2015). Immune complexes regulate bone metabolism through FcRγ signalling. Nature Communications, 6, 6637. https://doi.org/10.1038/ncomms7637.
Nelson, E. R., Wardell, S. E., & McDonnell, D. P. (2013). The molecular mechanisms underlying the pharmacological actions of estrogens, SERMs and oxysterols: Implications for the treatment and prevention of osteoporosis. Bone, 53(1), 42-50. https://doi.org/10.1016/j.bone.2012.11.011.
Novack, D. V., & Teitelbaum, S. L. (2008). The osteoclast: Friend or foe? Annual Review of Pathology, 3, 457-484. https://doi.org/10.1146/annurev.pathmechdis.3.121806.151431.
Park, K. H., Gu, D. R., Jin, S. H., Yoon, C. S., Ko, W., Kim, Y. C., & Lee, S. H. (2017). Pueraria lobate inhibits RANKL-mediated osteoclastogenesis via downregulation of CREB/PGC1β/c-Fos/NFATc1 signaling. American Journal of Chinese Medicine, 45(8), 1725-1744. https://doi.org/10.1142/s0192415x17500938.
Rodan, G. A., & Martin, T. J. (2000). Therapeutic approaches to bone diseases. Science, 289(5484), 1508-1514. https://doi.org/10.1126/science.289.5484.1508.
Sato, K., Suematsu, A., Nakashima, T., Takemoto-Kimura, S., Aoki, K., Morishita, Y., Asahara, H., Ohya K., Yamaguchi A., Takai T., Kodama T., Chatila T.A., Bito H., Takayanagi H. (2006). Regulation of osteoclast differentiation and function by the CaMK-CREB pathway. Nature Medicine (New York, NY, United States), 12(12), 1410-1416. https://doi.org/10.1038/nm1515.
Shaywitz, A. J., & Greenberg, M. E. (1999). CREB: A stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annual Review of Biochemistry, 68, 821-861. https://doi.org/10.1146/annurev.biochem.68.1.821.
Sobacchi, C., Schulz, A., Coxon, F. P., Villa, A., & Helfrich, M. H. (2013). Osteopetrosis: Genetics, treatment and new insights into osteoclast function. Nature Reviews Endocrinology, 9(9), 522-536. https://doi.org/10.1038/nrendo.2013.137.
Teitelbaum, S. L. (2000). Bone resorption by osteoclasts. Science, 289(5484), 1504-1508. https://doi.org/10.1126/science.289.5484.1504.
Tsukasaki, M., Hamada, K., Okamoto, K., Nagashima, K., Terashima, A., Komatsu, N., Win, S. J., Okamura T., Nitta T., Yasuda H., Penninger J. M., Takayanagi H. (2017). LOX fails to substitute for RANKL in osteoclastogenesis. Journal of Bone and Mineral Research, 32(3), 434-439. https://doi.org/10.1002/jbmr.2990.
Vinson, C. R., Sigler, P. B., & McKnight, S. L. (1989). Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science, 246(4932), 911-916. https://doi.org/10.1126/science.2683088.
Weitzmann, M. N., & Pacifici, R. (2006). Estrogen deficiency and bone loss: An inflammatory tale. Journal of Clinical Investigation, 116(5), 1186-1194. https://doi.org/10.1172/jci28550.
Xu, J., Liu, Y., Li, Y., Wang, H., Stewart, S., Van der Jeught, K., Agarwal, P., Zhang Y., Liu S., Zhao G., Wan J., Lu X., He X. (2019). Precise targeting of POLR2A as a therapeutic strategy for human triple negative breast cancer. Nature Nanotechnology, 14(4), 388-397. https://doi.org/10.1038/s41565-019-0381-6.
Yamada, K., Hayashi, M., Madokoro, H., Nishida, H., Du, W., Ohnuma, K., Sakamoto, M., Morimoto C., Yamada T. (2013). Nuclear localization of CD26 induced by a humanized monoclonal antibody inhibits tumor cell growth by modulating of POLR2A transcription. PLOS One, 8(4), e62304. https://doi.org/10.1371/journal.pone.0062304. - Contributed Indexing: Keywords: CREB1; POLR2A; bone resorption; osteoclastogenesis; osteoporosis
- Accession Number: 0 (Creb1 protein, mouse)
0 (Cyclic AMP Response Element-Binding Protein)
0 (RNA, Small Interfering)
EC 2.7.7.6 (DNA-Directed RNA Polymerases) - Publication Date: Date Created: 20210217 Date Completed: 20211014 Latest Revision: 20211014
- Publication Date: 20221213
- Accession Number: 10.1002/jcp.30220
- Accession Number: 33595106
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.