Menu
×
West Ashley Library
Closed
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed
Phone: (843) 805-6888
Village Library
Closed
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed
Phone: (843) 889-3300
Otranto Road Library
Closed
Phone: (843) 572-4094
Mt. Pleasant Library
Closed
Phone: (843) 849-6161
McClellanville Library
Closed
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed
Phone: (843) 744-2489
John's Island Library
Closed
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
Closed
Phone: (843) 869-2355
Dorchester Road Library
Closed
Phone: (843) 552-6466
John L. Dart Library
Closed
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed
Phone: (843) 795-6679
Main Library
Closed
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
West Ashley Library
Closed
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed
Phone: (843) 805-6888
Village Library
Closed
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed
Phone: (843) 889-3300
Otranto Road Library
Closed
Phone: (843) 572-4094
Mt. Pleasant Library
Closed
Phone: (843) 849-6161
McClellanville Library
Closed
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed
Phone: (843) 744-2489
John's Island Library
Closed
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
Closed
Phone: (843) 869-2355
Dorchester Road Library
Closed
Phone: (843) 552-6466
John L. Dart Library
Closed
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed
Phone: (843) 795-6679
Main Library
Closed
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Analysis of selenium nanoparticles in human plasma by capillary electrophoresis hyphenated to inductively coupled plasma mass spectrometry.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Grønbæk-Thorsen F;Grønbæk-Thorsen F; Hansen RH; Hansen RH; Østergaard J; Østergaard J; Gammelgaard B; Gammelgaard B; Møller LH; Møller LH
- Source:
Analytical and bioanalytical chemistry [Anal Bioanal Chem] 2021 Mar; Vol. 413 (8), pp. 2247-2255. Date of Electronic Publication: 2021 Feb 13.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 101134327 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1618-2650 (Electronic) Linking ISSN: 16182642 NLM ISO Abbreviation: Anal Bioanal Chem Subsets: MEDLINE
- Publication Information: Original Publication: Heidelberg : Springer-Verlag, 2002-
- Subject Terms:
- Abstract: Nanoparticles (NPs) are increasingly applied in research and development of new therapies. Characterization of NP systems most often include size, shape, size distribution, and charge but information on the chemical stability of NPs and investigation of the presence of dissolved species is most often missing in efficacy studies due to lack of appropriate methods. In this study, a method based on capillary electrophoresis coupled to inductively coupled plasma mass spectrometry (CE-ICP-MS) was established for analysis of selenium (Se) NPs and dissolved Se species in aqueous media. Peak area and migration time precisions (RSD) of 1.4-3.0% and 1.0-2.6%, respectively, were obtained. CE-ICP-MS analysis of a commercially available SeNP suspension (Q-SeNP) revealed large amounts of selenite corresponding to 32% of the total Se content in the suspension, indicating considerable NP degradation upon storage. The CE-ICP-MS method was modified using a coated fused silica capillary in order to analyze SeNPs in human plasma. Peak area and migration time precisions (RSD) in the range of 3.3-10.7% and 0.8-2.8%, respectively, were achieved. Degradation of polyvinyl alcohol (PVA)-coated SeNPs to selenite in human plasma was demonstrated using the modified method. The amounts of SeNP and selenite were estimated based on a correction factor for the ICP-MS signals of PVA-SeNP and dissolved Se. To the best of our knowledge, this is the first study of SeNPs by CE-ICP-MS and highlights the potential of CE-ICP-MS for quantitative characterization of the behavior of SeNPs in biological media.
- References: Maleki A, Karimpour A, Dizaj S. The role of mechanical engineering in the development of nano drug delivery systems; a review. Int J Nano Dimens. 2018;9(1):1–6.
Zhang L, Fx G, Jm C, Az W, Rs L, Oc F. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2007;83(5):761. https://doi.org/10.1038/sj.clpt.6100400 . (PMID: 10.1038/sj.clpt.610040017957183)
Sanchez-Lopez E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, et al. Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials. 2020;10(2):39. https://doi.org/10.3390/nano10020292 . (PMID: 10.3390/nano10020292)
Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. Bioeng Transl Med. 2019;4(3):16. https://doi.org/10.1002/btm2.10143 . (PMID: 10.1002/btm2.10143)
Eleraky NE, Allam A, Hassan SB, Omar MM. Nanomedicine fight against antibacterial resistance: an overview of the recent pharmaceutical innovations. Pharmaceutics. 2020;12(2):51. https://doi.org/10.3390/pharmaceutics12020142 . (PMID: 10.3390/pharmaceutics12020142)
Tran PA, Webster TJ. Selenium nanoparticles inhibit Staphylococcus aureus growth. Int J Nanomedicine. 2011;6:6. https://doi.org/10.2147/ijn.S21729 . (PMID: 10.2147/ijn.S21729)
Huang T, Holden JA, Heath DE, O'Brien-Simpson NM, O'Connor AJ. Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale. 2019;11(31):14937–51. https://doi.org/10.1039/c9nr04424h . (PMID: 10.1039/c9nr04424h31363721)
Boroumand S, Safari M, Shaabani E, Shirza M, Faridi-Majidi R. Selenium nanoparticles: synthesis, characterization and study of their cytotoxicity, antioxidant and antibacterial activity. Mater Res Express. 2019;6(8):9. https://doi.org/10.1088/2053-1591/ab2558 . (PMID: 10.1088/2053-1591/ab2558)
Chudobova D, Cihalova K, Dostalova S, Ruttkay-Nedecky B, Rodrigo MAM, Tmejova K, et al. Comparison of the effects of silver phosphate and selenium nanoparticles on Staphylococcus aureus growth reveals potential for selenium particles to prevent infection. FEMS Microbiol Lett. 2014;351(2):195–201. https://doi.org/10.1111/1574-6968.12353 . (PMID: 10.1111/1574-6968.1235324313683)
Tran PA, O'Brien-Simpson N, Reynolds EC, Pantarat N, Biswas DP, O’Connor AJ. Low cytotoxic trace element selenium nanoparticles and their differential antimicrobial properties against S-aureus and E-coli. Nanotechnology. 2016;27(4):10. https://doi.org/10.1088/0957-4484/27/4/045101 . (PMID: 10.1088/0957-4484/27/4/045101)
Sakr TM, Korany M, Katti KV. Selenium nanomaterials in biomedicine-an overview of new opportunities in nanomedicine of selenium. J Drug Deliv Sci Tech. 2018;46:223–33. https://doi.org/10.1016/j.jddst.2018.05.023 . (PMID: 10.1016/j.jddst.2018.05.023)
Estevez H, Palacios A, Gil D, Anguita J, Vallet-Regi M, Gonzalez B, et al. Antimycobacterial effect of selenium nanoparticles on mycobacterium tuberculosis. Front Microbiol. 2020;11:6. https://doi.org/10.3389/fmicb.2020.00800 . (PMID: 10.3389/fmicb.2020.00800)
Gomez-Gomez B, Arregui L, Serrano S, Santos A, Perez-Corona T, Madrid Y. Selenium and tellurium-based nanoparticles as interfering factors in quorum sensing-regulated processes: violacein production and bacterial biofilm formation. Metallomics. 2019;11(6):1104–14. (PMID: 10.1039/C9MT00044E)
Cihalova K, Chudobova D, Michalek P, Moulick A, Guran R, Kopel P, et al. Staphylococcus aureus and MRSA growth and biofilm formation after treatment with antibiotics and SeNPs. Int J Mol Sci. 2015;16(10):24656–72. https://doi.org/10.3390/ijms161024656 . (PMID: 10.3390/ijms161024656265012704632770)
Vahdati M, Moghadam TT. Synthesis and characterization of selenium nanoparticles-lysozyme nanohybrid system with synergistic antibacterial properties. Sci Rep. 2020;10(1):10. https://doi.org/10.1038/s41598-019-57333-7 . (PMID: 10.1038/s41598-019-57333-7)
Slavin YN, Asnis J, HaaAaAeAnfeli U, Bach H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity.(Report). Journal of Nanobiotechnology. 2017;15(1). https://doi.org/10.1186/s12951-017-0308-z .
Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release. 2015;200:138–57. https://doi.org/10.1016/j.jconrel.2014.12.030 . (PMID: 10.1016/j.jconrel.2014.12.03025545217)
Laborda F, Bolea E, Cepriá G, Gómez MT, Jiménez MS, Pérez-Arantegui J, et al. Detection, characterization and quantification of inorganic engineered nanomaterials: a review of techniques and methodological approaches for the analysis of complex samples. Anal Chim Acta. 2016;904:10–32. https://doi.org/10.1016/j.aca.2015.11.008 . (PMID: 10.1016/j.aca.2015.11.00826724760)
Sadik OA, Du N, Kariuki V, Okello V, Bushlyar V. Current and emerging technologies for the characterization of nanomaterials. ACS Sustain Chem Eng. 2014;2(7):1707–16. https://doi.org/10.1021/sc500175v . (PMID: 10.1021/sc500175v)
Meermann B, Nischwitz V. ICP-MS for the analysis at the nanoscale – a tutorial review. J Anal At Spectrom. 2018;33(9):1432–68. https://doi.org/10.1039/C8JA00037A . (PMID: 10.1039/C8JA00037A)
Filipe V, Hawe A, Jiskoot W. Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010;27(5):796–810. https://doi.org/10.1007/s11095-010-0073-2 . (PMID: 10.1007/s11095-010-0073-2202044712852530)
Mozhayeva D, Engelhard C. A critical review of single particle inductively coupled plasma mass spectrometry – a step towards an ideal method for nanomaterial characterization. J Anal At Spectrom. 2019. https://doi.org/10.1039/C9JA00206E .
Maknun L, Sumranjit J, Siripinyanond A. Use of flow field-flow fractionation and single particle inductively coupled plasma mass spectrometry for size determination of selenium nanoparticles in a mixture. RSC Adv. 2020;10(11):6423–35. https://doi.org/10.1039/c9ra07120b . (PMID: 10.1039/c9ra07120b)
Palomo-Siguero M, Vera P, Echegoyen Y, Nerin C, Cámara C, Madrid Y. Asymmetrical flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry for sizing SeNPs for packaging applications. Spectrochim Acta B At Spectrosc. 2017;132:19–25. https://doi.org/10.1016/j.sab.2017.03.019 . (PMID: 10.1016/j.sab.2017.03.019)
Pitkanen L, Striegel AM. Size-exclusion chromatography of metal nanoparticles and quantum dots. Trac-Trends Anal Chem. 2016;80:311–20. https://doi.org/10.1016/j.trac.2015.06.013 . (PMID: 10.1016/j.trac.2015.06.013)
Jimenez-Lamana J, Abad-Alvaro I, Bierla K, Laborda F, Szpunar J, Lobinski R. Detection and characterization of biogenic selenium nanoparticles in selenium-rich yeast by single particle ICPMS. J Anal At Spectrom. 2018;33(3):452–60. https://doi.org/10.1039/c7ja00378a . (PMID: 10.1039/c7ja00378a)
Garcia AFR, Corte-Rodriguez M, Macke M, LeBlanc KL, Mester Z, Montes-Bayon M, et al. Addressing the presence of biogenic selenium nanoparticles in yeast cells: analytical strategies based on ICP-TQ-MS. Analyst. 2020;145(4):1457–65. https://doi.org/10.1039/c9an01565e . (PMID: 10.1039/c9an01565e)
Chetwynd AJ, Guggenheim EJ, Briffa SM, Thorn JA, Lynch I, Valsami-Jones E. Current application of capillary electrophoresis in nanomaterial characterisation and its potential to characterise the protein and small molecule corona. Nanomaterials (Basel, Switzerland). 2018;8(2). https://doi.org/10.3390/nano8020099 .
Matczuk M, Aleksenko SS, Matysik FM, Jarosz M, Timerbaev AR. Comparison of detection techniques for capillary electrophoresis analysis of gold nanoparticles. ELECTROPHORESIS. 2015;36(9–10):1158–63. https://doi.org/10.1002/elps.201400597 . (PMID: 10.1002/elps.20140059725781270)
Qu H, Mudalige TK, Linder SW. Capillary electrophoresis/inductively-coupled plasma-mass spectrometry: development and optimization of a high resolution analytical tool for the size-based characterization of nanomaterials in dietary supplements. Anal Chem. 2014;86(23):11620–7. https://doi.org/10.1021/ac5025655 . (PMID: 10.1021/ac502565525354835)
Liu LH, He B, Liu Q, Yun ZJ, Yan XT, Long YM, et al. Identification and accurate size characterization of nanoparticles in complex media. Angew Chem-Int Edit. 2014;53(52):14476–9. https://doi.org/10.1002/anie.201408927 . (PMID: 10.1002/anie.201408927)
Michalke B, Vinković-Vrček I. Speciation of nano and ionic form of silver with capillary electrophoresis-inductively coupled plasma mass spectrometry. J Chromatogr A. 2018;1572:162–71. https://doi.org/10.1016/j.chroma.2018.08.031 . (PMID: 10.1016/j.chroma.2018.08.03130146375)
Matczuk M, Legat J, Shtykov SN, Jarosz M, Timerbaev AR. Characterization of the protein corona of gold nanoparticles by an advanced treatment of CE-ICP-MS data. ELECTROPHORESIS. 2016;37(15–16):2257–9. https://doi.org/10.1002/elps.201600152 . (PMID: 10.1002/elps.20160015227291947)
Legat J, Matczuk M, Timerbaev A, Jarosz M. CE separation and ICP-MS detection of gold nanoparticles and their protein conjugates. Chromatographia. 2017;80(11):1695–700. https://doi.org/10.1007/s10337-017-3387-y . (PMID: 10.1007/s10337-017-3387-y291705635681605)
Matczuk M, Anecka K, Scaletti F, Messori L, Keppler BK, Timerbaev AR, et al. Speciation of metal-based nanomaterials in human serum characterized by capillary electrophoresis coupled to ICP-MS: a case study of gold nanoparticles. Metallomics. 2015;7(9):1364–70. https://doi.org/10.1039/c5mt00109a . (PMID: 10.1039/c5mt00109a26095799)
Legat J, Matczuk M, Timerbaev A, Jarosz M. Cellular processing of gold nanoparticles: CE-ICP-MS evidence for the speciation changes in human cytosol. Anal Bioanal Chem. 2018;410(3):1151–6. https://doi.org/10.1007/s00216-017-0749-0 . (PMID: 10.1007/s00216-017-0749-029143214)
Kruszewska J, Kulpinska D, Grabowska-Jadach IG, Matczuk M. Joint forces of direct, single particle, CE- and HPLC-inductively coupled plasma mass spectrometry techniques for the examination of gold nanoparticle accumulation, distribution and changes inside human cells. Metallomics. 2020;12(3):408–15. https://doi.org/10.1039/c9mt00309f . (PMID: 10.1039/c9mt00309f31974537)
Qu H, Mudalige TK, Linder SW. Capillary electrophoresis coupled with inductively coupled mass spectrometry as an alternative to cloud point extraction based methods for rapid quantification of silver ions and surface coated silver nanoparticles. J Chromatogr A. 2016;1429:348–53. https://doi.org/10.1016/j.chroma.2015.12.033 . (PMID: 10.1016/j.chroma.2015.12.03326724893)
Foster SJ, Ganther HE. Synthesis of [75Se]trimethylselenonium iodide from [75Se]selenocystine. Anal Biochem. 1984;137(1):205–9. https://doi.org/10.1016/0003-2697(84)90371-3 . (PMID: 10.1016/0003-2697(84)90371-36731798)
Huang T, Kumari S, Herold H, Bargel H, Aigner TB, Heath DE, et al. Enhanced antibacterial activity of se nanoparticles upon coating with recombinant spider silk protein eADF4(κ16). Int J Nanomedicine. 2020;15:4275–88. https://doi.org/10.2147/ijn.S255833 . (PMID: 10.2147/ijn.S255833326066777306472)
Holtkamp HU, Morrow SJ, Kubanik M, Hartinger CG. Hyphenation of capillary electrophoresis to inductively coupled plasma mass spectrometry with a modified coaxial sheath-flow interface. J Chromatogr A. 2018;1561:76–82. https://doi.org/10.1016/j.chroma.2018.05.036 . (PMID: 10.1016/j.chroma.2018.05.03629798804)
Sapalidis AA. Porous polyvinyl alcohol membranes: preparation methods and applications. Symmetry-Basel. 2020;12(6):22. https://doi.org/10.3390/sym12060960 . (PMID: 10.3390/sym12060960)
Gronbaek-Thorsen F, Sturup S, Gammelgaard B, Moller LH. Development of a UPLC-IDA-ICP-MS/MS method for peptide quantitation in plasma by Se-labelling, and comparison to S-detection of the native peptide. J Anal At Spectrom. 2019;34(2):375–83. https://doi.org/10.1039/c8ja00341f . (PMID: 10.1039/c8ja00341f)
Bendahl L, Gammelgaard B, Jons O, Farver O, Hansen SH. Interfacing capillary electrophoresis with inductively coupled plasma mass spectrometry by direct injection nebulization for selenium speciation. J Anal At Spectrom. 2001;16(1):38–42. https://doi.org/10.1039/b007137o . (PMID: 10.1039/b007137o)
Qu H, Linder S, Mudalige T. Surface coating and matrix effect on the electrophoretic mobility of gold nanoparticles: a capillary electrophoresis-inductively coupled plasma mass spectrometry study. Anal Bioanal Chem. 2017;409(4):979–88. https://doi.org/10.1007/s00216-016-0012-0 . (PMID: 10.1007/s00216-016-0012-027783123) - Contributed Indexing: Keywords: Capillary electrophoresis/electrophoresis; Human plasma; Inductively coupled mass spectrometry/ICP-MS; Selenium nanoparticles
- Accession Number: H6241UJ22B (Selenium)
- Publication Date: Date Created: 20210213 Date Completed: 20210714 Latest Revision: 20210714
- Publication Date: 20240829
- Accession Number: 10.1007/s00216-021-03196-9
- Accession Number: 33580829
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.