pH-dependent delivery of chlorhexidine from PGA grafted mesoporous silica nanoparticles at resin-dentin interface.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Akram Z;Akram Z; Aati S; Aati S; Ngo H; Ngo H; Fawzy A; Fawzy A
  • Source:
    Journal of nanobiotechnology [J Nanobiotechnology] 2021 Feb 09; Vol. 19 (1), pp. 43. Date of Electronic Publication: 2021 Feb 09.
  • Publication Type:
    Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: BioMed Central Country of Publication: England NLM ID: 101152208 Publication Model: Electronic Cited Medium: Internet ISSN: 1477-3155 (Electronic) Linking ISSN: 14773155 NLM ISO Abbreviation: J Nanobiotechnology Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : BioMed Central, 2003-
    • Subject Terms:
    • Abstract:
      Background: A low pH environment is created due to the production of acids by oral biofilms that further leads to the dissolution of hydroxyapatite crystal in the tooth structure significantly altering the equilibrium. Although the overall bacterial counts may not be eradicated from the oral cavity, however, synthesis of engineered anti-bacterial materials are warranted to reduce the pathogenic impact of the oral biofilms. The purpose of this study was to synthesize and characterize chlorhexidine (CHX)-loaded mesoporous silica nanoparticles (MSN) grafted with poly-L-glycolic acid (PGA) and to test the in vitro drug release in various pH environments, cytotoxicity, and antimicrobial capacity. In addition, this study aimed to investigate the delivery of CHX-loaded/MSN-PGA nanoparticles through demineralized dentin tubules and how these nanoparticles interact with tooth dentin after mixing with commercial dentin adhesive for potential clinical application.
      Results: Characterization using SEM/TEM and EDX confirmed the synthesis of CHX-loaded/MSN-PGA. An increase in the percentage of drug encapsulation efficiency from 81 to 85% in CHX loaded/MSN and 92-95% in CHX loaded/MSN-PGA proportionately increased with increasing the amount of CHX during the fabrication of nanoparticles. For both time-periods (24 h or 30 days), the relative microbial viability significantly decreased by increasing the CHX content (P < 0.001). Generally, the cell viability percentage of DPSCs exposed to MSN-PGA/Blank, CHX-loaded/MSN, and CHX-loaded/MSN-PGA, respectively was > 80% indicating low cytotoxicity profiles of experimental nanoparticles. After 9 months in artificial saliva (pH 7.4), the significantly highest micro-tensile bond strength value was recorded for 25:50 CHX/MSN and 25:50:50 CHX/MSN-PGA. A homogenous and widely distributed 50:50:50 CHX-loaded/MSN-PGA nanoparticles exhibited excellent bonding with the application of commercially available dentin adhesive.
      Conclusions: A pH-sensitive CHX release response was noted when loaded in MSN grafted PGA nanoparticles. The formulated drug-loaded nanocarrier demonstrated excellent physicochemical, spectral, and biological characteristics. Showing considerable capacity to penetrate effectively inside dentinal tubules and having high antibacterial efficacy, this system could be potentially used in adhesive and restorative dentistry.
    • References:
      Small. 2009 Jun;5(12):1408-13. (PMID: 19296554)
      J Antimicrob Chemother. 1985 Jan;15 Suppl A:7-14. (PMID: 3980338)
      Adv Sci (Weinh). 2018 Feb 22;5(5):1700527. (PMID: 29876202)
      Caries Res. 2004 May-Jun;38(3):173-81. (PMID: 15153686)
      J Endod. 2012 Sep;38(9):1249-52. (PMID: 22892744)
      J Oral Rehabil. 2004 Oct;31(10):1014-22. (PMID: 15387843)
      J Dent. 2017 Jun;61:12-20. (PMID: 28438559)
      J Mech Behav Biomed Mater. 2020 Oct;110:103927. (PMID: 32957222)
      Nat Protoc. 2006;1(3):1112-6. (PMID: 17406391)
      J Dent. 1995 Oct;23(5):281-7. (PMID: 7560374)
      Dent Mater. 2017 Jul;33(7):830-846. (PMID: 28506608)
      J Dent Res. 2016 Aug;95(9):1065-72. (PMID: 27422859)
      Sci Rep. 2020 Apr 14;10(1):6365. (PMID: 32286402)
      J Mater Chem B. 2018 Jan 21;6(3):428-439. (PMID: 32254522)
      J Clin Periodontol. 2004 Aug;31(8):609-14. (PMID: 15257736)
      Nanomaterials (Basel). 2018 May 09;8(5):. (PMID: 29747457)
      J Dent. 2018 Nov;78:83-90. (PMID: 30153498)
      J Funct Biomater. 2016 Aug 02;7(3):. (PMID: 27490577)
      Biochim Biophys Acta. 1980;613(1):168-77. (PMID: 6246953)
      J Nihon Univ Sch Dent. 1994 Dec;36(4):235-40. (PMID: 7869125)
      Toxicol In Vitro. 2001 Aug-Oct;15(4-5):271-6. (PMID: 11566548)
      J Dent Res. 2010 Sep;89(9):996-1001. (PMID: 20505047)
      ACS Appl Mater Interfaces. 2017 Aug 30;9(34):29055-29062. (PMID: 28795557)
      Int J Oral Sci. 2017 Jun;9(2):74-79. (PMID: 28452377)
      Int J Pharm. 2006 May 18;314(2):189-97. (PMID: 16510257)
      J Colloid Interface Sci. 2016 Feb 1;463:279-87. (PMID: 26550786)
      Macromol Mater Eng. 2017 May;302(5):. (PMID: 29056869)
      J Control Release. 2010 Feb 25;142(1):47-52. (PMID: 19804804)
      J Dent. 2009 Oct;37(10):807-12. (PMID: 19615807)
      J Biomed Mater Res B Appl Biomater. 2019 Nov;107(8):2673-2683. (PMID: 30895695)
      Dent Mater. 1998 Nov;14(6):441-7. (PMID: 10483407)
      J Control Release. 2007 Oct 8;122(3):338-44. (PMID: 17644208)
      Science. 2015 May 29;348(6238):aaa8075. (PMID: 26023142)
      Aust Dent J. 2008 Sep;53(3):286-91. (PMID: 18782377)
      Acta Biomater. 2014 Jan;10(1):375-83. (PMID: 24008178)
      Am J Dent. 2007 Feb;20(1):7-20. (PMID: 17380802)
      Adv Mater. 2012 Mar 22;24(12):1504-34. (PMID: 22378538)
      Colloids Surf B Biointerfaces. 2019 Apr 1;176:212-218. (PMID: 30623808)
      Int J Pharm. 2013 Jun 25;450(1-2):296-303. (PMID: 23598077)
      Int J Oral Sci. 2015 Jun 26;7(2):110-24. (PMID: 25257880)
      Dent Mater. 2016 Feb;32(2):192-9. (PMID: 26743966)
      Bioengineering (Basel). 2017 Jun 22;4(3):. (PMID: 28952538)
      Ann Biomed Eng. 2010 Jun;38(6):1989-2003. (PMID: 20195761)
      Dent Mater. 2010 Aug;26(8):779-85. (PMID: 20472282)
    • Grant Information:
      PG #008/10402012 Faculty of Health and Medical Sciences; 00800/70237003 Dental School University of Western Australia; 00800/68001004 Colgate-Palmolive Company
    • Contributed Indexing:
      Keywords: Adhesion; Antimicrobial; Chlorhexidine; Drug delivery; Mesoporous silica nanoparticle; pH-sensitive
    • Accession Number:
      0 (Anti-Bacterial Agents)
      0 (Composite Resins)
      0 (Dental Materials)
      0 (Glycolates)
      0WT12SX38S (glycolic acid)
      7631-86-9 (Silicon Dioxide)
      R4KO0DY52L (Chlorhexidine)
    • Publication Date:
      Date Created: 20210210 Date Completed: 20210914 Latest Revision: 20210914
    • Publication Date:
      20231215
    • Accession Number:
      PMC7871398
    • Accession Number:
      10.1186/s12951-021-00788-6
    • Accession Number:
      33563280