20-Hydroxyecdysone (20E) signaling as a promising target for the chemical control of malaria vectors.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: BioMed Central Country of Publication: England NLM ID: 101462774 Publication Model: Electronic Cited Medium: Internet ISSN: 1756-3305 (Electronic) Linking ISSN: 17563305 NLM ISO Abbreviation: Parasit Vectors Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : BioMed Central
    • Subject Terms:
    • Abstract:
      With the rapid development and spread of resistance to insecticides among anopheline malaria vectors, the efficacy of current World Health Organization (WHO)-approved insecticides targeting these vectors is under threat. This has led to the development of novel interventions, including improved and enhanced insecticide formulations with new targets or synergists or with added sterilants and/or antimalarials, among others. To date, several studies in mosquitoes have revealed that the 20-hydroxyecdysone (20E) signaling pathway regulates both vector abundance and competence, two parameters that influence malaria transmission. Therefore, insecticides which target 20E signaling (e.g. methoxyfenozide and halofenozide) may be an asset for malaria vector control. While such insecticides are already commercially available for lepidopteran and coleopteran pests, they still need to be approved by the WHO for malaria vector control programs. Until recently, chemicals targeting 20E signaling were considered to be insect growth regulators, and their effect was mostly studied against immature mosquito stages. However, in the last few years, promising results have been obtained by applying methoxyfenozide or halofenozide (two compounds that boost 20E signaling) to Anopheles populations at different phases of their life-cycle. In addition, preliminary studies suggest that methoxyfenozide resistance is unstable, causing the insects substantial fitness costs, thereby potentially circumventing one of the biggest challenges faced by current vector control efforts. In this review, we first describe the 20E signaling pathway in mosquitoes and then summarize the mechanisms whereby 20E signaling regulates the physiological processes associated with vector competence and vector abundance. Finally, we discuss the potential of using chemicals targeting 20E signaling to control malaria vectors.
    • References:
      World Health Organization. World malaria report. Geneva: World Health Organization; 2020. https://www.who.int/publications/i/item/9789240015791 .
      Hogan AB, Jewell BL, Sherrard-Smith E, Vesga JF, Watson OJ, Whittaker C, et al. Potential impact of the COVID-19 pandemic on HIV, tuberculosis, and malaria in low-income and middle-income countries: a modelling study. Lancet Glob Health. 2020;8(9):e1132–41. (PMID: 32673577735798810.1016/S2214-109X(20)30288-6)
      Sinclair D, Zani B, Donegan S, Olliaro P, Garner P. Artemisinin‐based combination therapy for treating uncomplicated malaria. Cochranr DB Syst Rev. 2009;3:12.
      Gutman JR, Chico RM. Evidence for treating malaria with artemisinin-based combination therapy in the first trimester of pregnancy. Lancet Infect Dis. 2020;5:8.
      World Health Organization. Global plan for insecticide resistance management in malaria vectors. Geneva: World Health Organization; 2012. https://www.who.int/malaria/publications/atoz/gpirm/en/ .
      World Health Organization. Guidelines for malaria vector control. Geneva: World Health Organization; 2019. https://www.who.int/malaria/publications/atoz/9789241550499/en/ .
      Utzinger J, Tozan Y, Singer BH. Efficacy and cost-effectiveness of environmental management for malaria control. Trop Med Int Health. 2001;6(9):677–87. (PMID: 1155543410.1046/j.1365-3156.2001.00769.x11555434)
      Castro MC, Tsuruta A, Kanamori S, Kannady K, Mkude S. Community-based environmental management for malaria control: evidence from a small-scale intervention in Dar es Salaam, Tanzania. Malaria J. 2009;8(1):57. (PMID: 10.1186/1475-2875-8-57)
      Randell HF, Dickinson KL, Shayo EH, Mboera LE, Kramer RA. Environmental management for malaria control: knowledge and practices in Mvomero, Tanzania. EcoHealth. 2010;7(4):507–16. (PMID: 2069450310.1007/s10393-010-0343-920694503)
      Manning JE, Oliveira F, Coutinho-Abreu IV, Herbert S, Meneses C, Kamhawi S, et al. Safety and immunogenicity of a mosquito saliva peptide-based vaccine: a randomised, placebo-controlled, double-blind, phase 1 trial. Lancet. 2020;395(10242):1998–2007.
      Adepoju P. RTS, S malaria vaccine pilots in three African countries. Lancet. 2019;393(10182):1685. (PMID: 3103436510.1016/S0140-6736(19)30937-7)
      Laurens MB. RTS, S/AS01 vaccine (Mosquirix™): An overview. Hum Vaccines Immunother. 2020;16(3):480–9. (PMID: 10.1080/21645515.2019.1669415)
      Rts S. Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet. 2015;386(9988):31–45. (PMID: 10.1016/S0140-6736(15)60721-8)
      World Health Organization. World malaria report 2018. Geneva: World Health Organization; 2018. https://www.who.int/malaria/publications/world-malaria-report-2018/en/ .
      Fillinger U, Lindsay SW. Larval source management for malaria control in Africa: myths and reality. Malaria J. 2011;10(1):353. (PMID: 10.1186/1475-2875-10-353)
      Knox TB, Juma EO, Ochomo EO, Jamet HP, Ndungo L, Chege P, et al. An online tool for mapping insecticide resistance in major Anopheles vectors of human malaria parasites and review of resistance status for the Afrotropical region. Parasites Vectors. 2014;7(1):76. (PMID: 24559061394221010.1186/1756-3305-7-76)
      World Health Organization. Global report on insecticide resistance in malaria vectors: 2010–2016. Geneva: World Health Organization; 2018. https://www.who.int/malaria/publications/atoz/9789241514057/en/ .
      Dadzie SK, Chabi J, Asafu-Adjaye A, Owusu-Akrofi O, Baffoe-Wilmot A, Malm K, et al. Evaluation of piperonyl butoxide in enhancing the efficacy of pyrethroid insecticides against resistant Anopheles gambiae sl in Ghana. Malaria J. 2017;16(1):342. (PMID: 10.1186/s12936-017-1960-3)
      Sahu SS, Dash S, Sonia T, Gunasekaran K. Synergist piperonyl butoxide enhances the efficacy of deltamethrin in deltamethrin-resistant Anopheles culicifacies sensu lato in malaria endemic districts of Odisha State, India. Indian J Med Res. 2019;149(4):554. (PMID: 31411181667682810.4103/ijmr.IJMR_144_18)
      Gleave K, Lissenden N, Richardson M, Choi L, Ranson H. Piperonyl butoxide (PBO) combined with pyrethroids in insecticide‐treated nets to prevent malaria in Africa. Cochrane Database Syst Rev. 2018;2018:11.
      Paton DG, Childs LM, Itoe MA, Holmdahl IE, Buckee CO, Catteruccia F. Exposing Anopheles mosquitoes to antimalarials blocks Plasmodium parasite transmission. Nature. 2019;567:239–43. (PMID: 30814727643817910.1038/s41586-019-0973-1)
      Nakagawa Y, Sonobe H. 20-Hydroxyecdysone. Handbook of hormones. Amsterdam: Elsevier; 2016.
      Childs LM, Cai FY, Kakani EG, Mitchell SN, Paton D, Gabrieli P, et al. Disrupting mosquito reproduction and parasite development for malaria control. PLoS Pathog. 2016;12(12):e1006060. (PMID: 27977810515808110.1371/journal.ppat.1006060)
      Reynolds RA, Smith RC. The 20-hydroxyecdysone agonist, halofenozide, primes anti-Plasmodium immunity in Anopheles gambiae via the ecdysone receptor. Sci Rep. 2020;10:21084.
      Gabrieli P, Kakani EG, Mitchell SN, Mameli E, Want EJ, Anton AM, et al. Sexual transfer of the steroid hormone 20E induces the postmating switch in Anopheles gambiae. Proc Natl Acad Sci USA. 2014;111(46):16353–8. (PMID: 25368171424631210.1073/pnas.1410488111)
      Beckage NE, Marion KM, Walton WE, Wirth MC, Tan FF. Comparative larvicidal toxicities of three ecdysone agonists on the mosquitoes Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae. Arch Insect Biochem. 2004;57(3):111–22. (PMID: 10.1002/arch.20021)
      Morou E, Lirakis M, Pavlidi N, Zotti M, Nakagawa Y, Smagghe G, et al. A new dibenzoylhydrazine with insecticidal activity against Anopheles mosquito larvae. Pest Manag Sci. 2013;69(7):827–33. (PMID: 2320876110.1002/ps.344123208761)
      Clayton RB. The utilization of sterols by insects. J Lipid Res. 1964;5(1):3–19. (PMID: 1417332710.1016/S0022-2275(20)40254-814173327)
      Karlson P. Chemistry and biochemistry of insect hormones. Angew Chem Int Ed. 1963;2(4):175–82. (PMID: 10.1002/anie.196301751)
      Rees HH. Ecdysteroidogenic pathway. In: Henry HL, Norman AW, editors. Encyclopedia of hormones. New York: Elsevier; 2003. p. 460–1. (PMID: 10.1016/B0-12-341103-3/00070-X)
      Jenkins SP, Brown MR, Lea AO. Inactive prothoracic glands in larvae and pupae of Aedes aegypti: ecdysteroid release by tissues in the thorax and abdomen. Insect Biochem Mol Biol. 1992;22(6):553–9. (PMID: 10.1016/0965-1748(92)90032-A)
      Pondeville E, Maria A, Jacques J-C, Bourgouin C, Dauphin-Villemant C. Anopheles gambiae males produce and transfer the vitellogenic steroid hormone 20-hydroxyecdysone to females during mating. Proc Natl Acad Sci USA. 2008;105(50):19631–6. (PMID: 19060216260496510.1073/pnas.0809264105)
      Raikhel A, Brown M, Belles X. 3.9 Hormonal control of reproductive processes. Comprehens Mol Insect Sci. 2005;3:433–91.
      Raikhel AS, Kokoza VA, Zhu J, Martin D, Wang S-F, Li C, et al. Molecular biology of mosquito vitellogenesis: from basic studies to genetic engineering of antipathogen immunity. Insect Biochem Mol Biol. 2002;32(10):1275–86. (PMID: 1222591810.1016/S0965-1748(02)00090-512225918)
      Roy S, Saha TT, Johnson L, Zhao B, Ha J, White KP, et al. Regulation of gene expression patterns in mosquito reproduction. PLoS Genet. 2015;11(8):e1005450. (PMID: 26274815453724410.1371/journal.pgen.1005450)
      Yoshiyama-Yanagawa T, Enya S, Shimada-Niwa Y, Yaguchi S, Haramoto Y, Matsuya T, et al. The conserved Rieske oxygenase DAF-36/Neverland is a novel cholesterol-metabolizing enzyme. J Biol Chem. 2011;286(29):25756–62. (PMID: 21632547313824210.1074/jbc.M111.244384)
      Gilbert LI, Rewitz KF. The function and evolution of the Halloween genes: the pathway to the arthropod molting hormone. In: Smagghe G, editor. Ecdysone: structures and functions. Dordrecht: Springer Netherlands; 2009. p. 231–69.
      Vogel KJ, Valzania L, Coon KL, Brown MR, Strand MR. Transcriptome sequencing reveals large-scale changes in axenic Aedes aegypti larvae. PLoS Negl Trop Dis. 2017;11(1):e0005273. (PMID: 28060822524590710.1371/journal.pntd.0005273)
      Niwa R, Namiki T, Ito K, Shimada-Niwa Y, Kiuchi M, Kawaoka S, et al. Non-molting glossy/shroud encodes a short-chain dehydrogenase/reductase that functions in the ‘Black Box’ of the ecdysteroid biosynthesis pathway. Development. 2010;137(12):1991–9. (PMID: 2050159010.1242/dev.045641)
      Niwa R, Sakudoh T, Namiki T, Saida K, Fujimoto Y, Kataoka H. The ecdysteroidogenic P450 Cyp302a1/disembodied from the silkworm, Bombyx mori, is transcriptionally regulated by prothoracicotropic hormone. Insect Mol Biol. 2005;14(5):563–71. (PMID: 1616461210.1111/j.1365-2583.2005.00587.x16164612)
      Ono H, Rewitz KF, Shinoda T, Itoyama K, Petryk A, Rybczynski R, et al. Spook and Spookier code for stage-specific components of the ecdysone biosynthetic pathway in Diptera. Dev Biol. 2006;298(2):555–70. (PMID: 1694956810.1016/j.ydbio.2006.07.02316949568)
      Ou Q, Magico A, King-Jones K. Nuclear receptor DHR4 controls the timing of steroid hormone pulses during Drosophila development. PLoS Biol. 2011;9(9):e1001160. (PMID: 21980261318122510.1371/journal.pbio.1001160)
      Rewitz KF, O’Connor MB, Gilbert LI. Molecular evolution of the insect Halloween family of cytochrome P450s: phylogeny, gene organization and functional conservation. Insect Biochem Mol Biol. 2007;37(8):741–53. (PMID: 1762827410.1016/j.ibmb.2007.02.01217628274)
      Pondeville E, David J-P, Guittard E, Maria A, Jacques J-C, Ranson H, et al. Microarray and RNAi Analysis of P450s in Anopheles gambiae male and female steroidogenic tissues: CYP307A1 is required for ecdysteroid synthesis. PLoS One. 2013;8(12):e79861–6. (PMID: 24324583385116910.1371/journal.pone.0079861)
      Niwa R, Matsuda T, Yoshiyama T, Namiki T, Mita K, Fujimoto Y, et al. CYP306A1, a cytochrome P450 enzyme, is essential for ecdysteroid biosynthesis in the prothoracic glands of Bombyx and Drosophila. J Biol Chem. 2004;279(34):35942–9. (PMID: 1519718510.1074/jbc.M40451420015197185)
      Warren JT, Petryk A, Marqués G, Parvy J-P, Shinoda T, Itoyama K, et al. Phantom encodes the 25-hydroxylase of Drosophila melanogaster and Bombyx mori: a P450 enzyme critical in ecdysone biosynthesis. Insect Biochem Mol Biol. 2004;34(9):991–1010. (PMID: 1535061810.1016/j.ibmb.2004.06.00915350618)
      Chávez VM, Marqués G, Delbecque JP, Kobayashi K, Hollingsworth M, Burr J, et al. The Drosophila disembodied gene controls late embryonic morphogenesis and codes for a cytochrome P450 enzyme that regulates embryonic ecdysone levels. Development. 2000;127(19):4115–26. (PMID: 1097604410.1242/dev.127.19.411510976044)
      Warren JT, Petryk A, Marqués G, Jarcho M, Parvy J-P, Dauphin-Villemant C, et al. Molecular and biochemical characterization of two P450 enzymes in the ecdysteroidogenic pathway of Drosophila melanogaster. Proc Natl Acad Sci USA. 2002;99(17):11043–8. (PMID: 1217742712320710.1073/pnas.162375799)
      Petryk A, Warren JT, Marqués G, Jarcho MP, Gilbert LI, Kahler J, et al. Shade is the Drosophila P450 enzyme that mediates the hydroxylation of ecdysone to the steroid insect molting hormone 20-hydroxyecdysone. Proc Natl Acad Sci USA. 2003;100(24):13773–8. (PMID: 1461027428349710.1073/pnas.2336088100)
      Oro AE, McKeown M, Evans RM. Relationship between the product of the Drosophila ultraspiracle locus and the vertebrate retinoid X receptor. Nature. 1990;347(6290):298–301. (PMID: 216959410.1038/347298a02169594)
      Koelle MR, Talbot WS, Segraves WA, Bender MT, Cherbas P, Hogness DS. The Drosophila EcR gene encodes an ecdysone receptor, a new member of the steroid receptor superfamily. Cell. 1991;67(1):59–77. (PMID: 191382010.1016/0092-8674(91)90572-G1913820)
      Cho W-L, Kapitskaya MZ, Raikhel AS. Mosquito ecdysteroid receptor: analysis of the cDNA and expression during vitellogenesis. Insect Biochem Molec. 1995;25(1):19–27. (PMID: 10.1016/0965-1748(94)00045-J)
      Kapitskaya M, Wang S, Cress DE, Dhadialla TS, Raikhel AS. The mosquito ultraspiracle homologue, a partner of ecdysteroid receptor heterodimer: cloning and characterization of isoforms expressed during vitellogenesis. Mol Cell Endocrinol. 1996;121(2):119–32. (PMID: 889231310.1016/0303-7207(96)03847-68892313)
      Rowinska-Zyrek M, Wiȩch A, Wa̧tły J, Wieczorek R, Witkowska D, Ożyhar A, et al. Copper (II)-binding induces a unique polyproline type II helical structure within the ion-binding segment in the intrinsically disordered F-domain of ecdysteroid receptor from Aedes aegypti. Inorg Chem. 2019;58(17):11782–92.
      Więch A, Rowińska-Żyrek M, Wątły J, Czarnota A, Hołubowicz R, Szewczuk Z, et al. The intrinsically disordered C-terminal F domain of the ecdysteroid receptor from Aedes aegypti exhibits metal ion-binding ability. J Steroid Biochem Mol Biol. 2019;186:42–55. (PMID: 3024384110.1016/j.jsbmb.2018.09.00830243841)
      Yao T-P, Segraves WA, Oro AE, McKeown M, Evans RM. Drosophila ultraspiracle modulates ecdysone receptor function via heterodimer formation. Cell. 1992;71(1):63–72. (PMID: 132753610.1016/0092-8674(92)90266-F1327536)
      Kumar MB, Fujimoto T, Potter DW, Deng Q, Palli SR. A single point mutation in ecdysone receptor leads to increased ligand specificity: implications for gene switch applications. Proc Natl Acad Sci USA. 2002;99(23):14710–5. (PMID: 1241157813748410.1073/pnas.222278999)
      Hu X, Cherbas L, Cherbas P. Transcription activation by the ecdysone receptor (EcR/USP): identification of activation functions. Mol Endocrinol. 2003;17(4):716–31. (PMID: 1255475910.1210/me.2002-028712554759)
      Cherbas L, Lee K, Cherbas P. Identification of ecdysone response elements by analysis of the Drosophila Eip28/29 gene. Gene Dev. 1991;5(1):120–31. (PMID: 189922710.1101/gad.5.1.1201899227)
      Wang S-F, Miura K, Miksicek RJ, Segraves WA, Raikhel AS. DNA binding and transactivation characteristics of the mosquito ecdysone receptor-Ultraspiracle complex. J Biol Chem. 1998;273(42):27531–40. (PMID: 976528510.1074/jbc.273.42.275319765285)
      Sun G, Zhu J, Li C, Tu Z, Raikhel AS. Two isoforms of the early E74 gene, an Ets transcription factor homologue, are implicated in the ecdysteroid hierarchy governing vitellogenesis of the mosquito, Aedes aegypti. Mol Cell Endocrinol. 2002;190(1–2):147–57. (PMID: 1199718810.1016/S0303-7207(01)00726-211997188)
      Sun G, Zhu J, Raikhel AS. The early gene E74B isoform is a transcriptional activator of the ecdysteroid regulatory hierarchy in mosquito vitellogenesis. Mol Cell Endocrinol. 2004;218(1–2):95–105. (PMID: 1513051410.1016/j.mce.2003.12.01415130514)
      Margam VM, Gelman DB, Palli SR. Ecdysteroid titers and developmental expression of ecdysteroid-regulated genes during metamorphosis of the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae). J Insect Physiol. 2006;52(6):558–68. (PMID: 1658001510.1016/j.jinsphys.2006.02.00316580015)
      Chen L, Zhu J, Sun G, Raikhel A. The early gene Broad is involved in the ecdysteroid hierarchy governing vitellogenesis of the mosquito Aedes aegypti. J Mol Endocrinol. 2004;33(3):743–61. (PMID: 1559103210.1677/jme.1.0153115591032)
      Zhu J, Chen L, Raikhel AS. Distinct roles of broad isoforms in regulation of the 20-hydroxyecdysone effector gene, Vitellogenin, in the mosquito Aedes aegypti. Mol Cell Endocrinol. 2007;267(1):97–105. (PMID: 17303321192901710.1016/j.mce.2007.01.006)
      Mane-Padros D, Cruz J, Cheng A, Raikhel AS. A critical role of the nuclear receptor HR3 in regulation of gonadotrophic cycles of the mosquito Aedes aegypti. PLoS One. 2012;7(9):e45019. (PMID: 23049766345886310.1371/journal.pone.0045019)
      Kapitskaya MZ, Li C, Miura K, Segraves W, Raikhel AS. Expression of the early-late gene encoding the nuclear receptor HR3 suggests its involvement in regulating the vitellogenic response to ecdysone in the adult mosquito. Mol Cell Endocrinol. 2000;160(1–2):25–37. (PMID: 1071553610.1016/S0303-7207(99)00253-110715536)
      Johnson LK. Regulation of gene expression patterns during reproduction in the female mosquito. Aedes aegypti: UC Riverside; 2018.
      Martı́n D, Wang S-F, Raikhel AS. The vitellogenin gene of the mosquito Aedes aegypti is a direct target of ecdysteroid receptor. Mol Cell Endocrinol. 2001;173(1–2):75–86.
      Cruz J, Sieglaff DH, Arensburger P, Atkinson PW, Raikhel AS. Nuclear receptors in the mosquito Aedes aegypti. FEBS J. 2009;276(5):1233–54. (PMID: 1918322810.1111/j.1742-4658.2008.06860.x19183228)
      Parthasarathy R, Palli SR. Stage-and cell-specific expression of ecdysone receptors and ecdysone-induced transcription factors during midgut remodeling in the yellow fever mosquito, Aedes aegypti. J Insect Physiol. 2007;53(3):216–29. (PMID: 1707436010.1016/j.jinsphys.2006.09.00917074360)
      Wang S-F, Li C, Sun G, Zhu J, Raikhel AS. Differential expression and regulation by 20-hydroxyecdysone of mosquito ecdysteroid receptor isoforms A and B. Mol Cell Endocrinol. 2002;196(1–2):29–42. (PMID: 1238582310.1016/S0303-7207(02)00225-312385823)
      Wang S-F, Li C, Zhu J, Miura K, Miksicek RJ, Raikhel AS. Differential expression and regulation by 20-hydroxyecdysone of mosquito ultraspiracle isoforms. Dev Biol. 2000;218(1):99–113. (PMID: 1064441410.1006/dbio.1999.957510644414)
      Wu Y, Parthasarathy R, Bai H, Palli SR. Mechanisms of midgut remodeling: juvenile hormone analog methoprene blocks midgut metamorphosis by modulating ecdysone action. Mech Dev. 2006;123(7):530–47. (PMID: 1682905810.1016/j.mod.2006.05.00516829058)
      Abrieux A, Debernard S, Maria A, Gaertner C, Anton S, Gadenne C, et al. Involvement of the G-protein-coupled dopamine/ecdysteroid receptor DopEcR in the behavioral response to sex pheromone in an insect. PLoS One. 2013;8(9):e72785. (PMID: 24023771376293010.1371/journal.pone.0072785)
      Takeuchi H, Paul RK, Matsuzaka E, Kubo T. EcR-A expression in the brain and ovary of the honeybee (Apis mellifera L.). Zool Sci. 2007;24(6):596–603.
      Hossain M, Shimizu S, Fujiwara H, Sakurai S, Iwami M. EcR expression in the prothoracicotropic hormone-producing neurosecretory cells of the Bombyx mori brain: an indication of the master cells of insect metamorphosis. FEBS J. 2006;273(16):3861–8. (PMID: 1691153110.1111/j.1742-4658.2006.05398.x16911531)
      Zhu J, Miura K, Chen L, Raikhel AS. AHR38, a homolog of NGFI-B, inhibits formation of the functional ecdysteroid receptor in the mosquito Aedes aegypti. EMBO J. 2000;19(2):253–62. (PMID: 1063722930555910.1093/emboj/19.2.253)
      Cruz J, Mane-Padros D, Zou Z, Raikhel AS. Distinct roles of isoforms of the heme-liganded nuclear receptor E75, an insect ortholog of the vertebrate Rev-erb, in mosquito reproduction. Mol Cell Endocrinol. 2012;349(2):262–71. (PMID: 2211596110.1016/j.mce.2011.11.00622115961)
      Zhu J, Chen L, Sun G, Raikhel AS. The competence factor βFtz-F1 potentiates ecdysone receptor activity via recruiting a p160/SRC coactivator. Mol Cell Biol. 2006;26(24):9402–12. (PMID: 17015464169853210.1128/MCB.01318-06)
      Gaddelapati SC, Dhandapani RK, Palli SR. CREB-binding protein regulates metamorphosis and compound eye development in the yellow fever mosquito, Aedes aegypti. Biochim Biophys Acta Gene Regul Mech. 2020:194:576.
      Williams J, Pinto J. Training manual on malaria entomology for entomology and vector control technicians (basic level). Washington DC: U.S. Agency for International Development; 2012.
      Clements A, Stanley-Samuelson DW. The biology of mosquitoes, volume 1: development, nutrition, and reproduction. J Med Entomol. 1994;31(1):181. (PMID: 10.1093/jmedent/31.1.181)
      Scaraffia PY. Disruption of mosquito blood meal protein metabolism. In: Adelman ZN, editor. Genetic control of malaria and dengue. New York: Elsevier; 2016. p. 253–75.
      Hou Y, Wang X-L, Saha TT, Roy S, Zhao B, Raikhel AS, et al. Temporal coordination of carbohydrate metabolism during mosquito reproduction. PLoS Genet. 2015;11(7):e1005309. (PMID: 26158648449765510.1371/journal.pgen.1005309)
      Dong D, Zhang Y, Smykal V, Ling L, Raikhel AS. HR38, an ortholog of NR4A family nuclear receptors, mediates 20-hydroxyecdysone regulation of carbohydrate metabolism during mosquito reproduction. Insect Biochem Mol Biol. 2018;96:19–26. (PMID: 29526770595976510.1016/j.ibmb.2018.02.003)
      Wang X, Hou Y, Saha TT, Pei G, Raikhel AS, Zou Z. Hormone and receptor interplay in the regulation of mosquito lipid metabolism. Proc Natl Acad Sci USA. 2017:2016:19326–26.
      Ziegler R, Ibrahim MM. Formation of lipid reserves in fat body and eggs of the yellow fever mosquito, Aedes aegypti. J Insect Physiol. 2001;47(6):623–7. (PMID: 1124995110.1016/S0022-1910(00)00158-X11249951)
      Brown MR, Clark KD, Gulia M, Zhao Z, Garczynski SF, Crim JW, et al. An insulin-like peptide regulates egg maturation and metabolism in the mosquito Aedes aegypti. Proc Natl Acad Sci USA. 2008;105(15):5716–21. (PMID: 18391205231137810.1073/pnas.0800478105)
      Brown MR, Graf R, Swiderek KM, Fendley D, Stracker TH, Champagne DE, et al. Identification of a steroidogenic neurohormone in female mosquitoes. J Biol Chem. 1998;273(7):3967–71. (PMID: 946158410.1074/jbc.273.7.3967)
      Riehle MA, Brown MR. Insulin receptor expression during development and a reproductive cycle in the ovary of the mosquito Aedes aegypti. Cell Tissue Res. 2002;308(3):409–20. (PMID: 1210743410.1007/s00441-002-0561-8)
      Vogel KJ, Brown MR, Strand MR. Ovary ecdysteroidogenic hormone requires a receptor tyrosine kinase to activate egg formation in the mosquito Aedes aegypti. Proc Natl Acad Sci USA. 2015;112(16):5057–62. (PMID: 25848040441330010.1073/pnas.1501814112)
      Valzania L, Mattee MT, Strand MR, Brown MR. Blood feeding activates the vitellogenic stage of oogenesis in the mosquito Aedes aegypti through inhibition of glycogen synthase kinase 3 by the insulin and TOR pathways. Dev Biol. 2019;454(1):85–95. (PMID: 31153832671755710.1016/j.ydbio.2019.05.011)
      Capurro MdL, De Bianchi A, Marinotti O. Aedes aegypti lipophorin. Comp Biochem Physiol B Comp Biochem. 1994;108(1):35–39.
      Van Heusden MC, Erickson BA, Pennington JE. Lipophorin levels in the yellow fever mosquito, Aedes aegypti, and the effect of feeding. Arch Insect Biochem Physiol. 1997;34(3):301–12. (PMID: 905543910.1002/(SICI)1520-6327(1997)34:3<301::AID-ARCH5>3.0.CO;2-X)
      Carpenter VK, Drake LL, Aguirre SE, Price DP, Rodriguez SD, Hansen IA. SLC7 amino acid transporters of the yellow fever mosquito Aedes aegypti and their role in fat body TOR signaling and reproduction. J Insect Physiol. 2012;58(4):513–22. (PMID: 22266018332225710.1016/j.jinsphys.2012.01.005)
      Attardo GM, Hansen IA, Shiao S-H, Raikhel AS. Identification of two cationic amino acid transporters required for nutritional signaling during mosquito reproduction. J Exp Biol. 2006;209(16):3071. (PMID: 1688805610.1242/jeb.02349)
      Boudko DY, Tsujimoto H, Rodriguez SD, Meleshkevitch EA, Price DP, Drake LL, et al. Substrate specificity and transport mechanism of amino-acid transceptor Slimfast from Aedes aegypti. Nat Commun. 2015;6(1):8546. (PMID: 2644954510.1038/ncomms9546)
      Carney GE, Bender M. The Drosophila ecdysone receptor (EcR) gene is required maternally for normal oogenesis. Genetics. 2000;154(3):1203–11. (PMID: 10757764146100710.1093/genetics/154.3.1203)
      Fournet F, Sannier C, Moriniere M, Porcheron P, Monteny N. Effects of two insect growth regulators on ecdysteroid production in Aedes aegypti (Diptera: Culicidae). J Med Entomol. 1995;32(5):588–93. (PMID: 747361210.1093/jmedent/32.5.5887473612)
      Lan Q, Grier CA. Critical period for pupal commitment in the yellow fever mosquito, Aedes aegypti. J Insect Physiol. 2004;50(7):667–76. (PMID: 1523462710.1016/j.jinsphys.2004.04.01215234627)
      Whisenton LR, Warren JT, Manning MK, Bollenbacher WE. Ecdysteroid titres during pupal-adult development of Aedes aegypti: basis for a sexual dimorphism in the rate of development. J Insect Physiol. 1989;35(1):67–73. (PMID: 10.1016/0022-1910(89)90038-3)
      Fujiwara H, Ogai S. Ecdysteroid-induced programmed cell death and cell proliferation during pupal wing development of the silkworm, Bombyx mori. Dev Genes Evol. 2001;211:3.
      Haouari-Abderrahim J, Rehimi N. Biological and reproduction activities of mosquito larvae of Culiseta morsitans (Theobald) after treatment by ecdysone agonist methoxyfenozide. Annu Res Rev Biol. 2014:4152–65.
      Werling K, Shaw WR, Itoe MA, Westervelt KA, Marcenac P, Paton DG, et al. Steroid hormone function controls non-competitive Plasmodium development in anopheles. Cell. 2019;177(2):315–25. (PMID: 30929905645077610.1016/j.cell.2019.02.036)
      Reynolds RA, Kwon H, Smith RC. 20-hydroxyecdysone (20E) primes innate immune responses that limit bacteria and malaria parasite survival in Anopheles gambiae. mSphere. 2020;5(2):e00983–19.
      Ye W, Liu X, Guo J, Sun X, Sun Y, Shen B, et al. piRNA-3878 targets P450 (CpCYP307B1) to regulate pyrethroid resistance in Culex pipiens pallens. Parasitol Res. 2017;116(9):2489–97. (PMID: 2869894810.1007/s00436-017-5554-328698948)
      Sun X, Xu N, Xu Y, Zhou D, Sun Y, Wang W, et al. A novel miRNA, miR-13664, targets CpCYP314A1 to regulate deltamethrin resistance in Culex pipiens pallens. Parasitology. 2019;146(2):197. (PMID: 2996653610.1017/S003118201800100229966536)
      Beach R. Mosquitoes: biting behavior inhibited by ecdysone. Science. 1979;205(4408):829–31. (PMID: 1781486010.1126/science.205.4408.82917814860)
      Simonetti AB. The biology of malarial parasite in the mosquito: a review. Mem I Oswaldo Cruz. 1996;91(5):519–41. (PMID: 10.1590/S0074-02761996000500001)
      Vlachou D, Schlegelmilch T, Runn E, Mendes A, Kafatos FC. The developmental migration of Plasmodium in mosquitoes. Curr Opin Genet Dev. 2006;16(4):384–91. (PMID: 1679325910.1016/j.gde.2006.06.01216793259)
      Bennink S, Kiesow MJ, Pradel G. The development of malaria parasites in the mosquito midgut. Cell Microbiol. 2016;18(7):905–18. (PMID: 27111866508957110.1111/cmi.12604)
      Stone WJ, Eldering M, van Gemert G-J, Lanke KH, Grignard L, van de Vegte-Bolmer MG, et al. The relevance and applicability of oocyst prevalence as a read-out for mosquito feeding assays. Sci Rep. 2013;3:3418. (PMID: 24301557489438310.1038/srep03418)
      Miura K, Swihart BJ, Deng B, Zhou L, Pham TP, Diouf A, et al. Transmission-blocking activity is determined by transmission-reducing activity and number of control oocysts in Plasmodium falciparum standard membrane-feeding assay. Vaccine. 2016;34(35):4145–51. (PMID: 27372156495852110.1016/j.vaccine.2016.06.066)
      Ohm JR, Baldini F, Barreaux P, Lefevre T, Lynch PA, Suh E, et al. Rethinking the extrinsic incubation period of malaria parasites. Parasites Vectors. 2018;11(1):1–9. (PMID: 10.1186/s13071-018-2761-4)
      Shaw WR, Catteruccia f. Vector biology meets disease control: using basic research to fight vector-borne diseases. Nat Microbiol. 2018;1:1.
      Vontas J, Blass C, Koutsos A, David JP, Kafatos F, Louis C, et al. Gene expression in insecticide resistant and susceptible Anopheles gambiae strains constitutively or after insecticide exposure. Insect Mol Biol. 2005;14(5):509–21. (PMID: 1616460710.1111/j.1365-2583.2005.00582.x16164607)
      Riveron JM, Ibrahim SS, Mulamba C, Djouaka R, Irving H, Wondji MJ, et al. Genome-wide transcription and functional analyses reveal heterogeneous molecular mechanisms driving pyrethroids resistance in the major malaria vector Anopheles funestus across Africa. G3 (Bethesda). 2017;7(6):1819–32.
      Kang X-L, Zhang J-Y, Di Wang Y-MZ, Han X-L, Wang J-X, Zhao X-F. The steroid hormone 20-hydroxyecdysone binds to dopamine receptor to repress lepidopteran insect feeding and promote pupation. PLoS Genet. 2019;15:8.
      Wang S, Liu S, Liu H, Wang J, Zhou S, Jiang R-J, et al. 20-Hydroxyecdysone reduces insect food consumption resulting in fat body lipolysis during molting and pupation. J Mol Cell Biol. 2010;2(3):128–38. (PMID: 2043085610.1093/jmcb/mjq006)
      Landayan D, Feldman DS, Wolf FW. Satiation state-dependent dopaminergic control of foraging in Drosophila. Sci Rep. 2018;8(1):1–9. (PMID: 10.1038/s41598-018-24217-1)
      Mitchell SN, Kakani EG, South A, Howell PI, Waterhouse RM, Catteruccia F. Evolution of sexual traits influencing vectorial capacity in anopheline mosquitoes. Science. 2015;347(6225):985–8. (PMID: 25722409437352810.1126/science.1259435)
      Baldini F, Gabrieli P, South A, Valim C, Mancini F, Catteruccia F. The interaction between a sexually transferred steroid hormone and a female protein regulates oogenesis in the malaria mosquito Anopheles gambiae. PLoS Biol. 2013;11(10):e1001695. (PMID: 24204210381211010.1371/journal.pbio.1001695)
      Shaw WR, Teodori E, Mitchell SN, Baldini F, Gabrieli P, Rogers DW, et al. Mating activates the heme peroxidase HPX15 in the sperm storage organ to ensure fertility in Anopheles gambiae. Proc Natl Acad Sci USA. 2014;111(16):5854–9. (PMID: 24711401400081410.1073/pnas.1401715111)
      Dahalan FA, Churcher TS, Windbichler N, Lawniczak MKN. The male mosquito contribution towards malaria transmission: mating influences the Anopheles female midgut transcriptome and increases female susceptibility to human malaria parasites. PLoS Pathog. 2019;15:11.
      Dhadialla TS, Carlson GR, Le DP. New insecticides with ecdysteroidal and juvenile hormone activity. Annu Rev Entomol. 1998;43(1):545–69. (PMID: 944475710.1146/annurev.ento.43.1.5459444757)
      Smagghe G, Zotti M, Retnakaran A. Targeting female reproduction in insects with biorational insecticides for pest management: a critical review with suggestions for future research. Curr Opin Insect Sci. 2019;31:65–9. (PMID: 3110967510.1016/j.cois.2018.10.00931109675)
      Nakagawa Y. Nonsteroidal ecdysone agonists. Vitam Horm. 2005;73:131–73. (PMID: 1639941010.1016/S0083-6729(05)73005-3)
      Wing KD, Slawecki RA, Carlson GR. RH 5849, a nonsteroidal ecdysone agonist: effects on larval Lepidoptera. Science. 1988;241(4864):470–2. (PMID: 1779261010.1126/science.241.4864.470)
      Carlson GR, Dhadialla TS, Hunter R, Jansson RK, Jany CS, Lidert Z, et al. The chemical and biological properties of methoxyfenozide, a new insecticidal ecdysteroid agonist. Pest Manag Sci. 2001;57(2):115–9. (PMID: 1145564110.1002/1526-4998(200102)57:2<115::AID-PS245>3.0.CO;2-A11455641)
      Hamaidia K, Soltani N. Ovicidal activity of an insect growth disruptor (methoxyfenozide) against Culex pipiens L. and delayed effect on development. J Entomol Zool. 2016;4:4.
      Tateishi K, Kiuchi M, Takeda S. New cuticle formation and molt inhibition by RH-5849 in the common cutworm, Spodoptera litura (Lepidoptera: Noctuidae). Appl Entomol Zool. 1993;28(2):177–84. (PMID: 10.1303/aez.28.177)
      Cao G, Han Z. Tebufenozide resistance selected in Plutella xylostella and its cross-resistance and fitness cost. Pest Manag Sci. 2006;62(8):746–51. (PMID: 1675238210.1002/ps.123416752382)
      Qian L, Cao G, Song J, Yin Q, Han Z. Biochemical mechanisms conferring cross-resistance between tebufenozide and abamectin in Plutella xylostella. Pestic Biochem Physiol. 2008;91(3):175–9. (PMID: 10.1016/j.pestbp.2008.03.011)
      Mota‐Sanchez D, Wise JC, Poppen RV, Gut LJ, Hollingworth RM. Resistance of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), larvae in Michigan to insecticides with different modes of action and the impact on field residual activity. Pest Manag Sci. 2008;64(9):881–90.
      Jia B, Liu Y, Zhu YC, Liu X, Gao C, Shen J. Inheritance, fitness cost and mechanism of resistance to tebufenozide in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Pest Manag Sci. 2009;65(9):996–1002. (PMID: 1945918110.1002/ps.178519459181)
      Sun J, Liang P, Gao X. Cross-resistance patterns and fitness in fufenozide-resistant diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Pest Manag Sci. 2012;68(2):285–9. (PMID: 2185891010.1002/ps.225821858910)
      Tang B, Sun J, Zhou X, Gao X, Liang P. The stability and biochemical basis of fufenozide resistance in a laboratory-selected strain of Plutella xylostella. Pestic Biochem Physiol. 2011;101(2):80–5. (PMID: 10.1016/j.pestbp.2011.08.003)
      Mosallanejad H, Badisco L, Swevers L, Soin T, Knapen D, Broeck JV, et al. Ecdysone signaling and transcript signature in Drosophila cells resistant against methoxyfenozide. J Insect Physiol. 2010;56(12):1973–85. (PMID: 2081697510.1016/j.jinsphys.2010.08.02220816975)
      Mosallanejad H, Smagghe G. Biochemical mechanisms of methoxyfenozide resistance in the cotton leafworm Spodoptera littoralis. Pest Manag Sci. 2009;65(7):732–6. (PMID: 1936757010.1002/ps.175319367570)
      Yin Q, Qian L, Song P, Jian T, Han Z. Molecular mechanisms conferring asymmetrical cross-resistance between tebufenozide and abamectin in Plutella xylostella. J Asia Pac Entomol. 2019;22(1):189–93. (PMID: 10.1016/j.aspen.2018.12.015)
      Adedeji EO, Ogunlana OO, Fatumo S, Beder T, Ajamma Y, Koenig R, et al. Anopheles metabolic proteins in malaria transmission, prevention and control: a review. Parasites Vector. 2020;13(1):1–30. (PMID: 10.1186/s13071-020-04342-5)
      Li X, Ren X, Liu Y, Smagghe G, Liang P, Gao X. MiR-189942 regulates fufenozide susceptibility by modulating ecdysone receptor isoform B in Plutella xylostella (L.). Pestic Biochem Physiol. 2020;163:235–40.
      Rehan A, Freed S. Fitness cost of methoxyfenozide and the effects of its sublethal doses on development, reproduction, and survival of Spodoptera litura (Fabricius)(Lepidoptera: Noctuidae). Neotrop Entomol. 2015;44(5):513–20. (PMID: 2612305510.1007/s13744-015-0306-526123055)
      Shah RM, Shad SA, Abbas N. Methoxyfenozide resistance of the housefly, Musca domestica L.(Diptera: Muscidae): cross‐resistance patterns, stability and associated fitness costs. Pest Manag Sci. 2017;73(1):254–61.
      Smagghe G. Synergism of diacylhydrazine insecticides with metyrapone and diethylmaleate. J Appl Entomol. 2004;128(7):465–8. (PMID: 10.1111/j.1439-0418.2004.00830.x)
      Rogier C, Henry M, Rowland M, Carnevale P, Chandre F, Corbel V, et al. Guidelines for phase III evaluation of vector control methods against malaria. Med Trop. 2009;69(2):173–84.
      Brown F, Paton DG, Catteruccia F, Ranson H, Ingham VA. A steroid hormone agonist reduces female fitness in insecticide-resistant Anopheles populations. Insect Biochem Mol Biol. 2020;121:103372.
      Sougoufara S, Ottih EC, Tripet F. The need for new vector control approaches targeting outdoor biting Anopheline malaria vector communities. Parasites Vectors. 2020;13(1):1–15. (PMID: 10.1186/s13071-020-04170-7)
      Fiorenzano JM, Koehler PG, Xue R-D. Attractive toxic sugar bait (ATSB) for control of mosquitoes and its impact on non-target organisms: a review. Int J Environ Res Public Health. 2017;14(4):398. (PMID: 540959910.3390/ijerph14040398)
      Kline DL, Muller GC, Junnila A, Xue R-d. Attractive toxic sugar baits (ATSB): a novel vector management tool. In: Norris EJ, Coats JR, Gross AD, Clark JM, editors. Advances in the biorational control of medical and veterinary pests. Washington, DC: ACS Publications; 2018. p. 63–73. (PMID: 10.1021/bk-2018-1289.ch005)
      Tenywa FC, Kambagha A, Saddler A, Maia MF. The development of an ivermectin-based attractive toxic sugar bait (ATSB) to target Anopheles arabiensis. Malaria J. 2017;16(1):1–10. (PMID: 10.1186/s12936-017-1994-6)
      Müller GC, Beier JC, Traore SF, Toure MB, Traore MM, Bah S, et al. Successful field trial of attractive toxic sugar bait (ATSB) plant-spraying methods against malaria vectors in the Anopheles gambiae complex in Mali, West Africa. Malaria J. 2010;9(1):210. (PMID: 10.1186/1475-2875-9-210)
      Dinan L, Whiting P, Girault J-P, Lafont R, Dhadialla ST, Cress ED, et al. Cucurbitacins are insect steroid hormone antagonists acting at the ecdysteroid receptor. Biochem J. 1997;327(3):643–50.
      Zou C, Liu G, Liu S, Liu S, Song Q, Wang J, et al. Cucurbitacin B acts a potential insect growth regulator by antagonizing 20-hydroxyecdysone activity. Pest Manag Sci. 2018;74(6):1394–403. (PMID: 2920580010.1002/ps.481729205800)
      Chen J, Lu Z, Li M, Mao T, Wang H, Li F, et al. The mechanism of sublethal chlorantraniliprole exposure causing silkworm pupation metamorphosis defects. Pest Manag Sci. 2020;11:851.
      Meng X, Zhang N, Yang X, Miao L, Jiang H, Ji C, et al. Sublethal effects of chlorantraniliprole on molting hormone levels and mRNA expressions of three Halloween genes in the rice stem borer, Chilo suppressalis. Chemosphere. 2020;238:124676. (PMID: 3147353110.1016/j.chemosphere.2019.12467631473531)
      Ullah F, Gul H, Desneux N, Tariq K, Ali A, Gao X, et al. Clothianidin-induced sublethal effects and expression changes of vitellogenin and ecdysone receptors genes in the melon aphid, Aphis gossypii. Entomol Gen. 2019;39(2):137–49. (PMID: 10.1127/entomologia/2019/0865)
      Huang L, Lu M, Han G, Du Y, Wang J. Sublethal effects of chlorantraniliprole on development, reproduction and vitellogenin gene (CsVg) expression in the rice stem borer, Chilo suppressalis. Pest Manag Sci. 2016;72(12):2280–6. (PMID: 2693954610.1002/ps.427126939546)
      Han W, Zhang S, Shen F, Liu M, Ren C, Gao X. Residual toxicity and sublethal effects of chlorantraniliprole on Plutella xylostella (Lepidoptera: Plutellidae). Pest Manag Sci. 2012;68(8):1184–90. (PMID: 2249254410.1002/ps.3282)
      Di Prisco G, Iannaccone M, Ianniello F, Ferrara R, Caprio E, Pennacchio F, et al. The neonicotinoid insecticide clothianidin adversely affects immune signaling in a human cell line. Sci Rep. 2017;7(1):1–8. (PMID: 10.1038/s41598-017-13171-z)
      Loetti V, Bellocq I. Effects of the insecticides methoxyfenozide and cypermethrin on non-target arthropods: a field experiment. Austral Entomol. 2017;56(3):255–60. (PMID: 10.1111/aen.12230)
      Kadala A, Charreton M, Charnet P, Collet C. Honey bees long-lasting locomotor deficits after exposure to the diamide chlorantraniliprole are accompanied by brain and muscular calcium channels alterations. Sci Rep. 2019;9(1):1–9.
      Yang J, Schleicher TR, Dong Y, Park HB, Lan J, Cresswell P, et al. Disruption of mosGILT in Anopheles gambiae impairs ovarian development and Plasmodium infection. J Exp Med. 2020;217:1.
      Claudio-Piedras F, Recio-Tótoro B, Condé R, Hernández-Tablas JM, Hurtado-Sil G, Lanz-Mendoza H. DNA methylation in Anopheles albimanus modulates the midgut immune response against Plasmodium berghei. Front Immunol. 2020;10:3025. (PMID: 31993053697094010.3389/fimmu.2019.03025)
      Kirilly D, Wong JJL, Lim EKH, Wang Y, Zhang H, Wang C, et al. Intrinsic epigenetic factors cooperate with the steroid hormone ecdysone to govern dendrite pruning in Drosophila. Neuron. 2011;72(1):86–100. (PMID: 2198237110.1016/j.neuron.2011.08.00321982371)
      Rodgers FH, Gendrin M, Wyer CA, Christophides GK. Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes. PLoS Pathog. 2017;13(5):e1006391. (PMID: 28545061544881810.1371/journal.ppat.1006391)
      Marcenac P, Shaw WR, Kakani EG, Mitchell SN, South A, Werling K, et al. A mating-induced reproductive gene promotes Anopheles tolerance to Plasmodium falciparum infection. PLoS Pathog. 2020;16(12):e1008908. (PMID: 33347501778521210.1371/journal.ppat.1008908)
      Thailayil J, Gabrieli P, Caputo B, Bascuñán P, South A, Diabate A, et al. Analysis of natural female post-mating responses of Anopheles gambiae and Anopheles coluzzii unravels similarities and differences in their reproductive ecology. Sci Rep. 2018;8(1):1–10. (PMID: 10.1038/s41598-018-24923-w)
      Mitchell SN, Catteruccia F. Anopheline reproductive biology: impacts on vectorial capacity and potential avenues for malaria control. Cold Spring Harb Perspect Med. 2016;25593(1):15.
      Rosenberg R. Ovarian control of blood meal retention the the mosquito Anopheles freeborni. J Insect Physiol. 1980;26(7):477–80. (PMID: 10.1016/0022-1910(80)90119-5)
      Bryant B, Raikhel AS. Programmed autophagy in the fat body of Aedes aegypti is required to maintain egg maturation cycles. PloS One. 2011;6(11):e25502. (PMID: 22125592321963810.1371/journal.pone.0025502)
      Bouaziz A, Amira K, Djeghader N, Aïssaoui L, Boudjelida H. Impact of an insect growth regulator on the development and the reproduction potency of mosquito. J Entomol Zool. 2017;5(3):1662–7.
      Amira K, Boudjelida H, Farine J-P. Effect of an insect growth regulator (halofenozide) on the cuticular hydrocarbons of Culex pipiens larvae. Afr Entomol. 2013;21(2):343–8. (PMID: 10.4001/003.021.0228)
      Boudjelida H, Bouaziz A, Soin T, Smagghe G, Soltani N. Effects of ecdysone agonist halofenozide against Culex pipiens. Pestic Biochem Phys. 2005;83(2–3):115–23. (PMID: 10.1016/j.pestbp.2005.04.003)
      Fei X, Zhang Y, Ding L, Li Y, Deng X. Controlling the development of the dengue vector Aedes aegypti using HR3 RNAi transgenic Chlamydomonas. PLoS One. 2020;15(10):e0240223. (PMID: 33052930755646210.1371/journal.pone.0240223)
      Kamimura M, Saito H, Niwa R, Niimi T, Toyoda K, Ueno C, et al. Fungal ecdysteroid-22-oxidase, a new tool for manipulating ecdysteroid signaling and insect development. J Biol Chem. 2012;287(20):16488–98. (PMID: 22427652335132710.1074/jbc.M112.341180)
      Dunley JE, Brunner JF, Doerr MD, Beers E. Resistance and cross-resistance in populations of the leafrollers, Choristoneura rosaceana and Pandemis pyrusana, in Washington apples. J Insect Sci. 2006;6(1):14. (PMID: 29903032990303)
      Smirle MJ, Thomas Lowery D, Zurowski CL. Resistance and cross-resistance to four insecticides in populations of obliquebanded leafroller (Lepidoptera: Tortricidae). J Econ Entomol. 2002;95(4):820–5. (PMID: 1221682610.1603/0022-0493-95.4.820)
      Rehan A, Freed S. Resistance selection, mechanism and stability of Spodoptera litura (Lepidoptera: Noctuidae) to methoxyfenozide. Pestic Biochem Physiol. 2014;110:7–12. (PMID: 2475904510.1016/j.pestbp.2014.02.001)
      Stacke RF, Godoy DN, Pretto VE, Führ FM, Gubiani PdS, Hettwer BL, et al. Field-evolved resistance to chitin synthesis inhibitor insecticides by soybean looper, Chrysodeixis includens (Lepidoptera: Noctuidae), in Brazil. Chemosphere. 2020:127499.
      Cui L, Wang Q, Qi H, Wang Q, Yuan H, Rui C. Resistance selection of indoxacarb in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae): cross-resistance, biochemical mechanisms and associated fitness costs. Pest Manag Sci. 2018;74(11):2636–44. (PMID: 2970788910.1002/ps.5056)
      Meikle WG, Corby-Harris V, Carroll MJ, Weiss M, Snyder LA, Meador CA, et al. Exposure to sublethal concentrations of methoxyfenozide disrupts honey bee colony activity and thermoregulation. PLoS One. 2019;14(3):e0204635. (PMID: 30921332643853610.1371/journal.pone.0204635)
      Soltani N, Chouahda S, Smagghe G. Evaluation of halofenozide against prey mosquito larvae Culex pipiens and the predator fish Gambusia affinis: impact on growth and enzymatic activities. Comm Appl Biol Ghent Univ. 2008;73(3):659–66.
      Feng S, Kong Z, Wang X, Peng P, Zeng EY. Assessing the genotoxicity of imidacloprid and RH-5849 in human peripheral blood lymphocytes in vitro with comet assay and cytogenetic tests. Ecotoxicol Environ Saf. 2005;61(2):239–46. (PMID: 1588309510.1016/j.ecoenv.2004.10.005)
      Jiang J, Shan Z, Wang X, Zhu Y, Zhou J. Ecotoxicity of the nonsteroidal ecdysone mimic RH-5849 to Daphnia magna. Environ Sci Pollut Res. 2018;25(11):10730–9. (PMID: 10.1007/s11356-018-1275-0)
    • Grant Information:
      0012548469201512110500000000000000005254 Medical Faculty Endowment Fund, University of the Witwatersrand; 171215294399 South African National Research Foundation (DST/NRF) Chairs Initiative Grant; 110666 Communities of Practice grant
    • Contributed Indexing:
      Keywords: 20E agonist; 20E antagonist; Chemical control; Insecticide resistance; Steroid hormone; Synergists; Vector abundance; Vector competence
    • Accession Number:
      0 (Insecticides)
      0 (Juvenile Hormones)
      3604-87-3 (Ecdysone)
      5289-74-7 (Ecdysterone)
    • Publication Date:
      Date Created: 20210130 Date Completed: 20210818 Latest Revision: 20211027
    • Publication Date:
      20221213
    • Accession Number:
      PMC7844807
    • Accession Number:
      10.1186/s13071-020-04558-5
    • Accession Number:
      33514413