The Card1 nuclease provides defence during type III CRISPR immunity.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
    • Publication Information:
      Publication: Basingstoke : Nature Publishing Group
      Original Publication: London, Macmillan Journals ltd.
    • Subject Terms:
    • Abstract:
      In the type III CRISPR-Cas immune response of prokaryotes, infection triggers the production of cyclic oligoadenylates that bind and activate proteins that contain a CARF domain 1,2 . Many type III loci are associated with proteins in which the CRISPR-associated Rossman fold (CARF) domain is fused to a restriction  endonuclease-like domain 3,4 . However, with the exception of the well-characterized Csm6 and Csx1 ribonucleases 5,6 , whether and how these inducible effectors provide defence is not known. Here we investigated a type III CRISPR accessory protein, which we name cyclic-oligoadenylate-activated single-stranded ribonuclease and single-stranded deoxyribonuclease 1 (Card1). Card1 forms a symmetrical dimer that has a large central cavity between its CRISPR-associated Rossmann fold and restriction endonuclease domains that binds cyclic tetra-adenylate. The binding of ligand results in a conformational change comprising the rotation of individual monomers relative to each other to form a more compact dimeric scaffold, in which a manganese cation coordinates the catalytic residues and activates the cleavage of single-stranded-but not double-stranded-nucleic acids (both DNA and RNA). In vivo, activation of Card1 induces dormancy of the infected hosts to provide immunity against phage infection and plasmids. Our results highlight the diversity of strategies used in CRISPR systems to provide immunity.
    • References:
      Kazlauskiene, M., Kostiuk, G., Venclovas, Č., Tamulaitis, G. & Siksnys, V. A cyclic oligonucleotide signaling pathway in type III CRISPR–Cas systems. Science 357, 605–609 (2017). (PMID: 2866343910.1126/science.aao0100)
      Niewoehner, O. et al. Type III CRISPR–Cas systems produce cyclic oligoadenylate second messengers. Nature 548, 543–548 (2017). (PMID: 2872201210.1038/nature23467)
      McMahon, S. A. et al. Structure and mechanism of a type III CRISPR defence DNA nuclease activated by cyclic oligoadenylate. Nat. Commun. 11, 500 (2020). (PMID: 31980625698127410.1038/s41467-019-14222-x)
      Makarova, K. S., Anantharaman, V., Grishin, N. V., Koonin, E. V. & Aravind, L. CARF and WYL domains: ligand-binding regulators of prokaryotic defense systems. Front. Genet. 5, 102 (2014). (PMID: 24817877401220910.3389/fgene.2014.00102)
      Rostøl, J. T. & Marraffini, L. A. Non-specific degradation of transcripts promotes plasmid clearance during type III-A CRISPR–Cas immunity. Nat. Microbiol. 4, 656–662 (2019). (PMID: 30692669643066910.1038/s41564-018-0353-x)
      Sheppard, N. F., Glover, C. V. III, Terns, R. M. & Terns, M. P. The CRISPR-associated Csx1 protein of Pyrococcus furiosus is an adenosine-specific endoribonuclease. RNA 22, 216–224 (2016). (PMID: 26647461471267210.1261/rna.039842.113)
      Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007). (PMID: 1737980810.1126/science.1138140)
      Marraffini, L. A. & Sontheimer, E. J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843–1845 (2008). (PMID: 19095942269565510.1126/science.1165771)
      Brouns, S. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008). (PMID: 18703739589823510.1126/science.1159689)
      Jackson, R. N., van Erp, P. B., Sternberg, S. H. & Wiedenheft, B. Conformational regulation of CRISPR-associated nucleases. Curr. Opin. Microbiol. 37, 110–119 (2017). (PMID: 28646675568706610.1016/j.mib.2017.05.010)
      Makarova, K. S. et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67–83 (2020). (PMID: 3185771510.1038/s41579-019-0299-x)
      Hale, C. R. et al. RNA-guided RNA cleavage by a CRISPR RNA–Cas protein complex. Cell 139, 945–956 (2009). (PMID: 19945378295126510.1016/j.cell.2009.07.040)
      Kazlauskiene, M., Tamulaitis, G., Kostiuk, G., Venclovas, Č. & Siksnys, V. Spatiotemporal control of type III-A CRISPR–Cas immunity: coupling DNA degradation with the target RNA recognition. Mol. Cell 62, 295–306 (2016). (PMID: 2710511910.1016/j.molcel.2016.03.024)
      Samai, P. et al. Co-transcriptional DNA and RNA cleavage during type III CRISPR–Cas immunity. Cell 161, 1164–1174 (2015). (PMID: 25959775459484010.1016/j.cell.2015.04.027)
      Jia, N., Jones, R., Yang, G., Ouerfelli, O. & Patel, D. J. CRISPR–Cas III-A Csm6 CARF domain is a ring nuclease triggering stepwise cA 4 cleavage with ApA>p formation terminating RNase activity. Mol. Cell 75, 944–956 (2019). (PMID: 31326273673112810.1016/j.molcel.2019.06.014)
      Molina, R. et al. Structure of Csx1–cOA 4 complex reveals the basis of RNA decay in type III-B CRISPR–Cas. Nat. Commun. 10, 4302 (2019). (PMID: 31541109675444210.1038/s41467-019-12244-z)
      Jiang, W., Samai, P. & Marraffini, L. A. Degradation of phage transcripts by CRISPR-associated RNases enables type III CRISPR–Cas immunity. Cell 164, 710–721 (2016). (PMID: 26853474475287310.1016/j.cell.2015.12.053)
      Shmakov, S. A., Makarova, K. S., Wolf, Y. I., Severinov, K. V. & Koonin, E. V. Systematic prediction of genes functionally linked to CRISPR–Cas systems by gene neighborhood analysis. Proc. Natl Acad. Sci. USA 115, E5307–E5316 (2018). (PMID: 29784811600332910.1073/pnas.1803440115)
      Shah, S. A. et al. Comprehensive search for accessory proteins encoded with archaeal and bacterial type III CRISPR-cas gene cassettes reveals 39 new cas gene families. RNA Biol. 16, 530–542 (2019). (PMID: 2991192410.1080/15476286.2018.1483685)
      Makarova, K. S. et al. Evolutionary and functional classification of the CARF domain superfamily, key sensors in prokaryotic antivirus defense. Nucleic Acids Res. 48, 8828–8847 (2020). (PMID: 32735657749832710.1093/nar/gkaa635)
      Kosinski, J., Feder, M. & Bujnicki, J. M. The PD-(D/E)XK superfamily revisited: identification of new members among proteins involved in DNA metabolism and functional predictions for domains of (hitherto) unknown function. BMC Bioinformatics 6, 172 (2005). (PMID: 16011798118908010.1186/1471-2105-6-172)
      Balaratnam, S. & Basu, S. Divalent cation-aided identification of physico-chemical properties of metal ions that stabilize RNA G-quadruplexes. Biopolymers 103, 376–386 (2015). (PMID: 2580793710.1002/bip.22628)
      Nakae, S. et al. Structure of the EndoMS–DNA complex as mismatch restriction endonuclease. Structure 24, 1960–1971 (2016). (PMID: 2777368810.1016/j.str.2016.09.005)
      Szczepanowski, R. H. et al. Central base pair flipping and discrimination by PspGI. Nucleic Acids Res. 36, 6109–6117 (2008). (PMID: 18829716257732610.1093/nar/gkn622)
      Modell, J. W., Jiang, W. & Marraffini, L. A. CRISPR–Cas systems exploit viral DNA injection to establish and maintain adaptive immunity. Nature 544, 101–104 (2017). (PMID: 28355179554037310.1038/nature21719)
      Goldberg, G. W., Jiang, W., Bikard, D. & Marraffini, L. A. Conditional tolerance of temperate phages via transcription-dependent CRISPR–Cas targeting. Nature 514, 633–637 (2014). (PMID: 25174707421491010.1038/nature13637)
      Lau, R. K. et al. Structure and mechanism of a cyclic trinucleotide-activated bacterial endonuclease mediating bacteriophage immunity. Mol. Cell 77, 723–733 (2020). (PMID: 31932164706545410.1016/j.molcel.2019.12.010)
      Lowey, B. et al. CBASS immunity uses CARF-related effectors to sense 3′-5′- and 2′-5′-linked cyclic oligonucleotide signals and protect bacteria from phage infection. Cell 182, 38–49 (2020). (PMID: 32544385772854510.1016/j.cell.2020.05.019)
      Millman, A., Melamed, S., Amitai, G. & Sorek, R. Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems. Nat. Microbiol. 5, 1608–1615 (2020). (PMID: 32839535761097010.1038/s41564-020-0777-y)
      Meeske, A. J., Nakandakari-Higa, S. & Marraffini, L. A. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage. Nature 570, 241–245 (2019). (PMID: 31142834657042410.1038/s41586-019-1257-5)
      Wawrzyniak, P., Płucienniczak, G. & Bartosik, D. The different faces of rolling-circle replication and its multifunctional initiator proteins. Front. Microbiol. 8, 2353 (2017). (PMID: 29250047571492510.3389/fmicb.2017.02353)
      Athukoralage, J. S., Rouillon, C., Graham, S., Grüschow, S. & White, M. F. Ring nucleases deactivate type III CRISPR ribonucleases by degrading cyclic oligoadenylate. Nature 562, 277–280 (2018). (PMID: 30232454621970510.1038/s41586-018-0557-5)
      Yan, Y., Tao, H., He, J. & Huang, S. Y. The HDOCK server for integrated protein–protein docking. Nat. Protocols 15, 1829–1852 (2020). (PMID: 3226938310.1038/s41596-020-0312-x)
      Deibert, M., Grazulis, S., Sasnauskas, G., Siksnys, V. & Huber, R. Structure of the tetrameric restriction endonuclease NgoMIV in complex with cleaved DNA. Nat. Struct. Biol. 7, 792–799 (2000). (PMID: 1096665210.1038/79032)
      Pingoud, A., Wilson, G. G. & Wende, W. Type II restriction endonucleases—a historical perspective and more. Nucleic Acids Res. 44, 8011 (2016). (PMID: 27270082502749110.1093/nar/gkw513)
      Yang, W. Nucleases: diversity of structure, function and mechanism. Q. Rev. Biophys. 44, 1–93 (2011). (PMID: 2085471010.1017/S0033583510000181)
      Madeira, F. et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47, W636–W641 (2019). (PMID: 30976793660247910.1093/nar/gkz268)
      Kabsch, W. Xds. Acta Crystallogr. D 66, 125–132 (2010). (PMID: 20124692281566510.1107/S0907444909047337)
      McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007). (PMID: 19461840248347210.1107/S0021889807021206)
      Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010). (PMID: 20124702281567010.1107/S0907444909052925)
      Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010). (PMID: 20383002285231310.1107/S0907444910007493)
      Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D 68, 352–367 (2012). (PMID: 22505256332259510.1107/S0907444912001308)
      Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018). (PMID: 2871077410.1002/pro.3235)
      Kostrewa, D. & Winkler, F. K. Mg 2+ binding to the active site of EcoRV endonuclease: a crystallographic study of complexes with a substrate and product DNA at 2 Å resolution. Biochemistry 17, 683–696 (1995). (PMID: 10.1021/bi00002a036)
      Kreiswirth, B. N. et al. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305, 709–712 (1983). (PMID: 622687610.1038/305709a0)
      Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004). (PMID: 1517312041979710.1101/gr.849004)
      Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012). (PMID: 22543367337183210.1093/bioinformatics/bts199)
      Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). (PMID: 2310488610.1093/bioinformatics/bts635)
      Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). (PMID: 2422767710.1093/bioinformatics/btt656)
    • Grant Information:
      S10 RR029205 United States RR NCRR NIH HHS; R01 GM129430 United States GM NIGMS NIH HHS; P30 CA008748 United States CA NCI NIH HHS; P30 GM124165 United States GM NIGMS NIH HHS; DP1 GM128184 United States GM NIGMS NIH HHS
    • Accession Number:
      0 (Adenine Nucleotides)
      0 (DNA, Single-Stranded)
      0 (Ligands)
      0 (Oligoribonucleotides)
      42Z2K6ZL8P (Manganese)
      61172-40-5 (2',5'-oligoadenylate)
      63231-63-0 (RNA)
      8L70Q75FXE (Adenosine Triphosphate)
      EC 3.1.- (Deoxyribonucleases)
      EC 3.1.- (Endoribonucleases)
    • Publication Date:
      Date Created: 20210118 Date Completed: 20210326 Latest Revision: 20230127
    • Publication Date:
      20240829
    • Accession Number:
      PMC7906951
    • Accession Number:
      10.1038/s41586-021-03206-x
    • Accession Number:
      33461211