Deletion of IKK2 in haematopoietic cells of adult mice leads to elevated interleukin-6, neutrophilia and fatal gastrointestinal inflammation.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101524092 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-4889 (Electronic) NLM ISO Abbreviation: Cell Death Dis Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Pub. Group
    • Subject Terms:
    • Abstract:
      The IκB kinase complex, consisting of IKK1, IKK2 and the regulatory subunit NEMO, is required for NF-κB signalling following the activation of several cell surface receptors, such as members of the Tumour Necrosis Factor Receptor superfamily and the Interleukin-1 Receptor. This is critical for haematopoietic cell proliferation, differentiation, survival and immune responses. To determine the role of IKK in the regulation of haematopoiesis, we used the Rosa26 Cre-ERT2 Cre/lox recombination system to achieve targeted, haematopoietic cell-restricted deletion of the genes for IKK1 or IKK2 in vivo. We found that the IKK complex plays a critical role in haematopoietic cell development and function. Deletion of IKK2, but not loss of IKK1, in haematopoietic cells led to an expansion of CD11b/Gr-1-positive myeloid cells (neutrophilia), severe anaemia and thrombocytosis, with reduced numbers of long-term haematopoietic stem cells (LT-HSCs), short-term haematopoietic stem cells (ST-HSCs) and multipotential progenitor cells (MPPs), increased circulating interleukin-6 (IL-6) and severe gastrointestinal inflammation. These findings identify distinct functions for the two IKK catalytic subunits, IKK1 and IKK2, in the haematopoietic system.
    • References:
      Kindler, V. et al. Stimulation of hematopoiesis in vivo by recombinant bacterial murine interleukin 3. Proc. Natl. Acad. Sci. USA 83, 1001–1005 (1986). (PMID: 308188710.1073/pnas.83.4.1001)
      Saeland, S. et al. Effects of recombinant human interleukin-3 on CD34-enriched normal hematopoietic progenitors and on myeloblastic leukemia cells. Blood 72, 1580–1588 (1988). (PMID: 246015610.1182/blood.V72.5.1580.1580)
      Brumatti, G., Salmanidis, M. & Ekert, P. G. Crossing paths: interactions between the cell death machinery and growth factor survival signals. Cell. Mol. life Sci. 67, 1619–1630 (2010). (PMID: 2015783810.1007/s00018-010-0288-8)
      Chaturvedi, P., Reddy, M. V. & Reddy, E. P. Src kinases and not JAKs activate STATs during IL-3 induced myeloid cell proliferation. Oncogene 16, 1749–1758 (1998). (PMID: 958202310.1038/sj.onc.1201972)
      Hercus, T. R. et al. The granulocyte-macrophage colony-stimulating factor receptor: linking its structure to cell signaling and its role in disease. Blood 114, 1289–1298 (2009). (PMID: 19436055272741610.1182/blood-2008-12-164004)
      Hansen, G. et al. The structure of the GM-CSF receptor complex reveals a distinct mode of cytokine receptor activation. Cell 134, 496–507 (2008). (PMID: 1869247210.1016/j.cell.2008.05.053)
      Rothwarf, D. M., Zandi, E., Natoli, G. & Karin, M. IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex. Nature 395, 297–300 (1998). (PMID: 10.1038/26261)
      Yamaoka, S. et al. Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell 93, 1231–1240 (1998). (PMID: 965715510.1016/S0092-8674(00)81466-X)
      DiDonato, J. A., Hayakawa, M., Rothwarf, D. M., Zandi, E. & Karin, M. A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 388, 548–554 (1997). (PMID: 925218610.1038/41493)
      Mercurio, F. et al. IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278, 860–866 (1997). (PMID: 934648410.1126/science.278.5339.860)
      Woronicz, J. D., Gao, X., Cao, Z., Rothe, M. & Goeddel, D. V. IkappaB kinase-beta: NF-kappaB activation and complex formation with IkappaB kinase-alpha and NIK. Science 278, 866–869 (1997). (PMID: 934648510.1126/science.278.5339.866)
      Zandi, E., Rothwarf, D. M., Delhase, M., Hayakawa, M. & Karin, M. The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell 91, 243–252 (1997). (PMID: 934624110.1016/S0092-8674(00)80406-7)
      Zandi, E., Chen, Y. & Karin, M. Direct phosphorylation of IkappaB by IKKalpha and IKKbeta: discrimination between free and NF-kappaB-bound substrate. Science 281, 1360–1363 (1998). (PMID: 972110310.1126/science.281.5381.1360)
      Regnier, C. H. et al. Identification and characterization of an IkappaB kinase. Cell 90, 373–383 (1997). (PMID: 924431010.1016/S0092-8674(00)80344-X)
      Perkins, N. D. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat. Rev. Mol. Cell Biol. 8, 49–62 (2007). (PMID: 1718336010.1038/nrm2083)
      Oeckinghaus, A., Hayden, M. S. & Ghosh, S. Crosstalk in NF-kappaB signaling pathways. Nat. Immunol. 12, 695–708 (2011). (PMID: 2177227810.1038/ni.2065)
      Gaur, U. & Aggarwal, B. B. Regulation of proliferation, survival and apoptosis by members of the TNF superfamily. Biochem. Pharmacol. 66, 1403–1408 (2003). (PMID: 1455521410.1016/S0006-2952(03)00490-8)
      Aggarwal, B. B., Gupta, S. C. & Kim, J. H. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 119, 651–665 (2012). (PMID: 22053109326519610.1182/blood-2011-04-325225)
      Dejardin, E. et al. The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 17, 525–535 (2002). (PMID: 1238774510.1016/S1074-7613(02)00423-5)
      Claudio, E., Brown, K., Park, S., Wang, H. & Siebenlist, U. BAFF-induced NEMO-independent processing of NF-kappa B2 in maturing B cells. Nat. Immunol. 3, 958–965 (2002). (PMID: 1235296910.1038/ni842)
      Coope, H. J. et al. CD40 regulates the processing of NF-kappaB2 p100 to p52. EMBO J. 21, 5375–5385 (2002). (PMID: 1237473812907410.1093/emboj/cdf542)
      Kayagaki, N. et al. BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-kappaB2. Immunity 17, 515–524 (2002). (PMID: 1238774410.1016/S1074-7613(02)00425-9)
      Mercurio, F. & Manning, A. M. Multiple signals converging on NF-kappaB. Curr. Opin. Cell Biol. 11, 226–232 (1999). (PMID: 1020915710.1016/S0955-0674(99)80030-1)
      Senftleben, U. et al. Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science 293, 1495–1499 (2001). (PMID: 1152098910.1126/science.1062677)
      Kaisho, T. et al. IkappaB kinase alpha is essential for mature B cell development and function. J. Exp. Med. 193, 417–426 (2001). (PMID: 11181694219590010.1084/jem.193.4.417)
      Li, Z. W. et al. The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. J. Exp. Med. 189, 1839–1845 (1999). (PMID: 10359587219308210.1084/jem.189.11.1839)
      Tanaka, M. et al. Embryonic lethality, liver degeneration, and impaired NF-kappa B activation in IKK-beta-deficient mice. Immunity 10, 421–429 (1999). (PMID: 1022918510.1016/S1074-7613(00)80042-4)
      Makris, C. et al. Female mice heterozygous for IKK gamma/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol. Cell 5, 969–979 (2000). (PMID: 1091199110.1016/S1097-2765(00)80262-2)
      Rudolph, D. et al. Severe liver degeneration and lack of NF-kappaB activation in NEMO/IKKgamma-deficient mice. Genes Dev. 14, 854–862 (2000). (PMID: 1076674131649310.1101/gad.14.7.854)
      Schmidt-Supprian, M. et al. NEMO/IKK gamma-deficient mice model incontinentia pigmenti. Mol. Cell 5, 981–992 (2000). (PMID: 1091199210.1016/S1097-2765(00)80263-4)
      Pasparakis, M., Schmidt-Supprian, M. & Rajewsky, K. IkappaB kinase signaling is essential for maintenance of mature B cells. J. Exp. Med. 196, 743–752 (2002). (PMID: 12235208219405910.1084/jem.20020907)
      Li, Z. W., Omori, S. A., Labuda, T., Karin, M. & Rickert, R. C. IKK beta is required for peripheral B cell survival and proliferation. J. Immunol. 170, 4630–4637 (2003). (PMID: 1270734110.4049/jimmunol.170.9.4630)
      Schmidt-Supprian, M. et al. Mature T cells depend on signaling through the IKK complex. Immunity 19, 377–389 (2003). (PMID: 1449911310.1016/S1074-7613(03)00237-1)
      Schmidt-Supprian, M. et al. Differential dependence of CD4+CD25+ regulatory and natural killer-like T cells on signals leading to NF-kappaB activation. Proc. Natl. Acad. Sci. USA 101, 4566–4571 (2004). (PMID: 1507075810.1073/pnas.0400885101)
      Zhang, J., Li, L., Baldwin, A. S. Jr, Friedman, A. D. & Paz-Priel, I. Loss of IKKbeta but not NF-kappaB p65 skews differentiation towards myeloid over erythroid commitment and increases myeloid progenitor self-renewal and functional long-term hematopoietic stem cells. PloS ONE 10, e0130441 (2015). (PMID: 26102347447797810.1371/journal.pone.0130441)
      Hsu, L. C. et al. The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4. Nature 428, 341–345 (2004). (PMID: 1502920010.1038/nature02405)
      Park, J. M. et al. Signaling pathways and genes that inhibit pathogen-induced macrophage apoptosis-CREB and NF-kappaB as key regulators. Immunity 23, 319–329 (2005). (PMID: 1616950410.1016/j.immuni.2005.08.010)
      Kanters, E. et al. Inhibition of NF-kappaB activation in macrophages increases atherosclerosis in LDL receptor-deficient mice. J. Clin. Investig. 112, 1176–1185 (2003). (PMID: 1456170210.1172/JCI200318580)
      Nai, A. et al. Tamoxifen erythroid toxicity revealed by studying the role of nuclear receptor co-activator 4 in erythropoiesis. Haematologica 104, e383–e384 (2019). (PMID: 31366467666916010.3324/haematol.2019.224857)
      Greten, F. R. et al. NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell 130, 918–931 (2007). (PMID: 17803913213498610.1016/j.cell.2007.07.009)
      Mankan, A. K. et al. TNF-alpha-dependent loss of IKKbeta-deficient myeloid progenitors triggers a cytokine loop culminating in granulocytosis. Proc. Natl Acad. Sci. USA 108, 6567–6572 (2011). (PMID: 2146432010.1073/pnas.1018331108)
      Hsu, L. C. et al. IL-1beta-driven neutrophilia preserves antibacterial defense in the absence of the kinase IKKbeta. Nat. Immunol. 12, 144–150 (2011). (PMID: 2117002710.1038/ni.1976)
      Brill, J. R. & Baumgardner, D. J. Normocytic anemia. Am. Fam. Phys. 62, 2255–2264 (2000).
      Pietras, E. M. et al. Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions. Cell Stem Cell 17, 35–46 (2015). (PMID: 26095048454215010.1016/j.stem.2015.05.003)
      Velasco-Hernandez, T., Sawen, P., Bryder, D. & Cammenga, J. Potential pitfalls of the Mx1-Cre system: implications for experimental modeling of normal and malignant hematopoiesis. Stem Cell Rep. 7, 11–18 (2016). (PMID: 10.1016/j.stemcr.2016.06.002)
      Kishimoto, T. The biology of interleukin-6. Blood 74, 1–10 (1989). (PMID: 247379110.1182/blood.V74.1.1.1)
      Tecchio, C., Micheletti, A. & Cassatella, M. A. Neutrophil-derived cytokines: facts beyond expression. Front. Immunol. 5, 508 (2014). (PMID: 25374568420463710.3389/fimmu.2014.00508)
      Kishimoto, T. IL-6: from its discovery to clinical applications. Int. Immunol. 22, 347–352 (2010). (PMID: 2041025810.1093/intimm/dxq030)
      Libermann, T. A. & Baltimore, D. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol. Cell. Biol. 10, 2327–2334 (1990). (PMID: 2183031360580)
      Matsusaka, T. et al. Transcription factors NF-IL6 and NF-kappa B synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8. Proc. Natl. Acad. Sci. USA 90, 10193–10197 (1993). (PMID: 823427610.1073/pnas.90.21.10193)
      Tanaka, T., Narazaki, M. & Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 6, a016295 (2014). (PMID: 25190079417600710.1101/cshperspect.a016295)
      Neurath, M. F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 14, 329–342 (2014). (PMID: 2475195610.1038/nri3661)
      Strober, W., Fuss, I. J. & Blumberg, R. S. The immunology of mucosal models of inflammation. Annu Rev. Immunol. 20, 495–549 (2002). (PMID: 1186161110.1146/annurev.immunol.20.100301.064816)
      Neurath, M. F. et al. Mucosal Iimmunology (Fourth Edition): Intestinal inflammation and cancer of the gastrointestinal tract Ch. 91, 1761–1775 (Academic Press, Boston, 2015).
      De Smaele, E. et al. Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. Nature 414, 308–313 (2001). (PMID: 1171353010.1038/35104560)
      Tang, G. et al. Inhibition of JNK activation through NF-kappaB target genes. Nature 414, 313–317 (2001). (PMID: 1171353110.1038/35104568)
      Maeda, S. et al. IKKβ is required for prevention of apoptosis mediated by cell-bound but not by circulating TNFα. Immunity 19, 725–737 (2003). (PMID: 1461485910.1016/S1074-7613(03)00301-7)
      Sakon, S. et al. NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J. 22, 3898–3909 (2003). (PMID: 1288142416905210.1093/emboj/cdg379)
      Kamata, H. et al. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120, 649–661 (2005). (PMID: 1576652810.1016/j.cell.2004.12.041)
      Pasparakis, M., Luedde, T. & Schmidt-Supprian, M. Dissection of the NF-kappaB signalling cascade in transgenic and knockout mice. Cell Death Differ. 13, 861–872 (2006). (PMID: 1647022310.1038/sj.cdd.4401870)
      Liu, H., Lo, C. R. & Czaja, M. J. NF-kappaB inhibition sensitizes hepatocytes to TNF-induced apoptosis through a sustained activation of JNK and c-Jun. Hepatology 35, 772–778 (2002). (PMID: 1191502210.1053/jhep.2002.32534)
      Reuther-Madrid, J. Y. et al. The p65/RelA subunit of NF-kappaB suppresses the sustained, antiapoptotic activity of Jun kinase induced by tumor necrosis factor. Mol. Cell. Biol. 22, 8175–8183 (2002). (PMID: 1241772113407510.1128/MCB.22.23.8175-8183.2002)
      Chang, L. & Karin, M. Mammalian MAP kinase signalling cascades. Nature 410, 37–40 (2001). (PMID: 1124203410.1038/35065000)
      Mitsuyama, K. et al. Pro-inflammatory signaling by Jun-N-terminal kinase in inflammatory bowel disease. Int. J. Mol. Med. 17, 449–455 (2006). (PMID: 16465391)
      Roy, P. K., Rashid, F., Bragg, J. & Ibdah, J. A. Role of the JNK signal transduction pathway in inflammatory bowel disease. World J. Gastroenterol. 14, 200–202 (2008). (PMID: 18186555267511410.3748/wjg.14.200)
      Waetzig, G. H., Seegert, D., Rosenstiel, P., Nikolaus, S. & Schreiber, S. p38 mitogen-activated protein kinase is activated and linked to TNF-alpha signaling in inflammatory bowel disease. J. Immunol. 168, 5342–5351 (2002). (PMID: 1199449310.4049/jimmunol.168.10.5342)
      Assi, K., Pillai, R., Gomez-Munoz, A., Owen, D. & Salh, B. The specific JNK inhibitor SP600125 targets tumour necrosis factor-alpha production and epithelial cell apoptosis in acute murine colitis. Immunology 118, 112–121 (2006). (PMID: 16630028178226810.1111/j.1365-2567.2006.02349.x)
      Davis, R. J. Signal transduction by the JNK group of MAP kinases. Cell 103, 239–252 (2000). (PMID: 1105789710.1016/S0092-8674(00)00116-1)
      Johnson, G. L. & Nakamura, K. The c-jun kinase/stress-activated pathway: regulation, function and role in human disease. Biochim. Biophys. Acta 1773, 1341–1348 (2007). (PMID: 17306896199555910.1016/j.bbamcr.2006.12.009)
      Ishibashi, T. et al. Interleukin-6 is a potent thrombopoietic factor in vivo in mice. Blood 74, 1241–1244 (1989). (PMID: 278846410.1182/blood.V74.4.1241.1241)
      Atreya, R. et al. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nat. Med. 6, 583–588 (2000). (PMID: 1080271710.1038/75068)
      Jones, S. A. Directing transition from innate to acquired immunity: defining a role for IL-6. J. Immunol. 175, 3463–3468 (2005). (PMID: 1614808710.4049/jimmunol.175.6.3463)
      Curnow, S. J. et al. Inhibition of T cell apoptosis in the aqueous humor of patients with uveitis by IL-6/soluble IL-6 receptor trans-signaling. J. Immunol. 173, 5290–5297 (2004). (PMID: 1547007510.4049/jimmunol.173.8.5290)
      Gareus, R. et al. Normal epidermal differentiation but impaired skin-barrier formation upon keratinocyte-restricted IKK1 ablation. Nat. Cell Biol. 9, 461–469 (2007). (PMID: 1735163910.1038/ncb1560)
      Pasparakis, M. et al. TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature 417, 861–866 (2002). (PMID: 1207535510.1038/nature00820)
    • Accession Number:
      0 (Interleukin-6)
      0 (NF-kappa B)
      0 (interleukin-6, mouse)
      EC 2.7.11.10 (Chuk protein, mouse)
      EC 2.7.11.10 (I-kappa B Kinase)
      EC 2.7.11.10 (Ikbkb protein, mouse)
    • Publication Date:
      Date Created: 20210108 Date Completed: 20210913 Latest Revision: 20230127
    • Publication Date:
      20230128
    • Accession Number:
      PMC7791118
    • Accession Number:
      10.1038/s41419-020-03298-9
    • Accession Number:
      33414459