Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Amacrine Cells Forming Gap Junctions With Intrinsically Photosensitive Retinal Ganglion Cells: ipRGC Types, Neuromodulator Contents, and Connexin Isoform.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: Association For Research In Vision And Ophthalmology (Arvo) Country of Publication: United States NLM ID: 7703701 Publication Model: Print Cited Medium: Internet ISSN: 1552-5783 (Electronic) Linking ISSN: 01460404 NLM ISO Abbreviation: Invest Ophthalmol Vis Sci Subsets: MEDLINE
- Publication Information:
Publication: Brookline Ma : Association For Research In Vision And Ophthalmology (Arvo)
Original Publication: St. Louis, Mosby.
- Subject Terms:
- Abstract:
Purpose: Intrinsically photosensitive retinal ganglion cells (ipRGCs) signal not only centrally to non-image-forming visual centers of the brain but also intraretinally to amacrine interneurons through gap junction electrical coupling, potentially modulating image-forming retinal processing. We aimed to determine (1) which ipRGC types couple with amacrine cells, (2) the neuromodulator contents of ipRGC-coupled amacrine cells, and (3) whether connexin36 (Cx36) contributes to ipRGC-amacrine coupling.
Methods: Gap junction-permeable Neurobiotin tracer was injected into green fluorescent protein (GFP)-labeled ipRGCs in Opn4Cre/+; Z/EG mice to stain coupled amacrine cells, and immunohistochemistry was performed to reveal the neuromodulator contents of the Neurobiotin-stained amacrine cells. We also created Opn4Cre/+; Cx36flox/flox; Z/EG mice to knock out Cx36 in GFP-labeled ipRGCs and looked for changes in the number of ipRGC-coupled amacrine cells.
Results: Seventy-three percent of ipRGCs, including all six types (M1-M6), were tracer-coupled with amacrine somas 5.7 to 16.5 µm in diameter but not with ganglion cells. Ninety-two percent of the ipRGC-coupled somas were in the ganglion cell layer and the rest in the inner nuclear layer. Some ipRGC-coupled amacrine cells were found to accumulate serotonin or to contain nitric oxide synthase or neuropeptide Y. Knocking out Cx36 in M2 and M4 dramatically reduced the number of coupled somas.
Conclusions: Heterologous gap junction coupling with amacrine cells is widespread across mouse ipRGC types. ipRGC-coupled amacrine cells probably comprise multiple morphologic types and use multiple neuromodulators, suggesting that gap junctional ipRGC-to-amacrine signaling likely exerts diverse modulatory effects on retinal physiology. ipRGC-amacrine coupling is mediated partly, but not solely, by Cx36.
- References:
J Neurophysiol. 2013 Apr;109(7):1876-89. (PMID: 23343892)
Curr Eye Res. 2006 Jul-Aug;31(7-8):655-67. (PMID: 16877274)
Exp Eye Res. 1993 Feb;56(2):231-40. (PMID: 8462655)
Dev Neurobiol. 2017 May;77(5):610-624. (PMID: 28245529)
J Neurosci. 2004 Mar 31;24(13):3325-34. (PMID: 15056712)
J Neurosci. 2012 Sep 26;32(39):13608-20. (PMID: 23015450)
Neuroreport. 1997 May 27;8(8):1797-802. (PMID: 9223054)
J Comp Neurol. 2005 Aug 29;489(3):293-310. (PMID: 16025455)
J Neurosci. 2009 Jan 14;29(2):476-82. (PMID: 19144848)
Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14181-6. (PMID: 18779590)
Front Mol Neurosci. 2016 May 27;9:36. (PMID: 27303262)
Curr Biol. 2002 Feb 5;12(3):191-8. (PMID: 11839270)
J Neurosci. 2012 Aug 15;32(33):11478-85. (PMID: 22895730)
Brain Res. 2002 May 17;936(1-2):1-14. (PMID: 11988224)
J Comp Neurol. 2007 Nov 10;505(2):177-89. (PMID: 17853452)
J Comp Neurol. 2006 Jul 20;497(3):326-49. (PMID: 16736474)
Neuron. 2018 Dec 5;100(5):1149-1162.e5. (PMID: 30482690)
J Comp Neurol. 2001 Apr 9;432(3):296-306. (PMID: 11246209)
Vis Neurosci. 1995 Nov-Dec;12(6):1083-92. (PMID: 8962828)
J Comp Neurol. 2014 Apr 15;522(6):1411-43. (PMID: 24318667)
J Comp Neurol. 2010 Mar 15;518(6):911-27. (PMID: 20058323)
Nutrition. 2008 Sep;24(9):918-23. (PMID: 18662864)
Nucleic Acids Res. 2015 Jan;43(Database issue):D1171-5. (PMID: 25414328)
J Comp Neurol. 2005 May 9;485(3):191-201. (PMID: 15791644)
Neuron. 2014 May 21;82(4):781-8. (PMID: 24853938)
Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):E10484-E10493. (PMID: 29133423)
Neurosci Lett. 1991 Apr 29;125(2):187-90. (PMID: 1715532)
Neuron. 2010 Jul 15;67(1):49-60. (PMID: 20624591)
Nat Neurosci. 2013 Dec;16(12):1764-72. (PMID: 24185427)
Brain Res. 2000 Sep 29;878(1-2):213-7. (PMID: 10996155)
eNeuro. 2017 May 1;4(2):. (PMID: 28466070)
PLoS One. 2013 Jun 07;8(6):e66480. (PMID: 23762490)
PLoS One. 2011;6(7):e22721. (PMID: 21829491)
J Comp Neurol. 2011 Jun 1;519(8):1492-504. (PMID: 21452206)
J Physiol. 2014 Apr 1;592(7):1619-36. (PMID: 24396062)
J Comp Neurol. 2013 Mar 1;521(4):912-32. (PMID: 22886938)
Vis Neurosci. 2010 Jul;27(3-4):91-101. (PMID: 20537217)
J Comp Neurol. 2010 Dec 1;518(23):4813-24. (PMID: 20963830)
Science. 2002 Feb 8;295(5557):1070-3. (PMID: 11834835)
J Comp Neurol. 2005 Nov 7;492(1):66-77. (PMID: 16175559)
Curr Biol. 2007 Jun 5;17(11):981-8. (PMID: 17524644)
J Comp Neurol. 2005 Sep 12;490(1):29-39. (PMID: 16041717)
J Neurosci. 2018 Apr 11;38(15):3753-3766. (PMID: 29572434)
J Comp Neurol. 2019 Jan 1;527(1):297-311. (PMID: 30311650)
Vis Neurosci. 1995 Nov-Dec;12(6):1143-9. (PMID: 8962833)
Sci Adv. 2020 Jul 08;6(28):eaba7232. (PMID: 32832605)
Curr Biol. 2015 Nov 2;25(21):2763-2773. (PMID: 26441349)
Curr Biol. 2003 Aug 5;13(15):1290-8. (PMID: 12906788)
Neurosci Lett. 2013 Aug 26;548:233-8. (PMID: 23748074)
Neuroscience. 2006 Jun 19;140(1):123-36. (PMID: 16626866)
Science. 1986 Jul 25;233(4762):444-6. (PMID: 3726538)
Invest Ophthalmol Vis Sci. 2013 Aug 01;54(8):5151-62. (PMID: 23821205)
Nature. 2005 Feb 17;433(7027):749-54. (PMID: 15716953)
J Comp Neurol. 2002 Sep 16;451(2):115-26. (PMID: 12209831)
Curr Biol. 2006 Feb 21;16(4):389-95. (PMID: 16488873)
J Gen Physiol. 2017 Mar 6;149(3):335-353. (PMID: 28153865)
J Neurosci. 2001 Jan 1;21(1):230-9. (PMID: 11150340)
Brain Res. 2012 Jan 9;1430:112-25. (PMID: 22133309)
J Comp Neurol. 2010 Jul 1;518(13):2456-74. (PMID: 20503422)
Mol Vis. 2012;18:1339-53. (PMID: 22690112)
Biochimie. 2019 Jun;161:51-55. (PMID: 30419260)
Prog Retin Eye Res. 2015 Jul;47:19-37. (PMID: 25797468)
Invest Ophthalmol Vis Sci. 2011 Jul 01;52(7):4886-96. (PMID: 21482641)
Science. 2020 May 1;368(6490):527-531. (PMID: 32355031)
J Comp Neurol. 2010 Aug 1;518(15):3130-48. (PMID: 20533364)
J Comp Neurol. 1997 Jul 14;383(4):512-28. (PMID: 9208996)
Brain Res. 1991 Nov 8;564(1):19-26. (PMID: 1777820)
J Comp Neurol. 2016 Oct 1;524(14):2845-72. (PMID: 26972791)
J Neurosci. 1987 May;7(5):1574-85. (PMID: 3553450)
J Comp Neurol. 2010 Jul 1;518(13):2405-22. (PMID: 20503419)
- Grant Information:
F31 EY007003 United States EY NEI NIH HHS; P30 EY007003 United States EY NEI NIH HHS; R01 EY023660 United States EY NEI NIH HHS
- Accession Number:
0 (Connexins)
0 (Luminescent Agents)
0 (Neuropeptide Y)
0 (Protein Isoforms)
0 (Rod Opsins)
0 (melanopsin)
0 (neurobiotin)
147336-22-9 (Green Fluorescent Proteins)
333DO1RDJY (Serotonin)
6SO6U10H04 (Biotin)
EC 1.14.13.39 (Nitric Oxide Synthase)
- Publication Date:
Date Created: 20210107 Date Completed: 20210611 Latest Revision: 20231213
- Publication Date:
20231215
- Accession Number:
PMC7804497
- Accession Number:
10.1167/iovs.62.1.10
- Accession Number:
33410914
No Comments.