Menu
×
West Ashley Library
9 a.m. - 6 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 6 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 6 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 6 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 6 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 1 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 6 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. - 6 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. - 6 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 1 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 3 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 6 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 6 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 6 p.m.
Phone: (843) 795-6679
Main Library
9 a.m. - 6 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. - 6 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
West Ashley Library
9 a.m. - 6 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 6 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 6 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 6 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 6 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 1 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 6 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. - 6 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. - 6 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 1 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 3 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 6 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 6 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 6 p.m.
Phone: (843) 795-6679
Main Library
9 a.m. - 6 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. - 6 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Integrated and segregated frequency architecture of the human brain network.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Ma J;Ma J; Lin Y; Lin Y; Hu C; Hu C; Zhang J; Zhang J; Yi Y; Yi Y; Dai Z; Dai Z
- Source:
Brain structure & function [Brain Struct Funct] 2021 Mar; Vol. 226 (2), pp. 335-350. Date of Electronic Publication: 2021 Jan 03.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 101282001 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1863-2661 (Electronic) Linking ISSN: 18632653 NLM ISO Abbreviation: Brain Struct Funct Subsets: MEDLINE
- Publication Information: Original Publication: Berlin : Springer-Verlag, c2007-
- Subject Terms:
- Abstract: The frequency of brain activity modulates the relationship between the brain and human behavior. Insufficient understanding of frequency-specific features may thus lead to inconsistent explanations of human behavior. However, to date, the frequency-specific features of the human brain functional network at the whole-brain level remain poorly understood. Here, we used resting-state fMRI data and graph-theory analyses to investigate the frequency-specific characteristics of fMRI signals in 12 frequency bands (frequency range 0.01-0.7 Hz) in 75 healthy participants. We found that brain regions with higher level and more complex functions had a more variable functional connectivity pattern but engaged less in higher frequency ranges. Moreover, brain regions that engaged in fewer frequency bands played more integrated roles (i.e., higher network participation coefficient and lower within-module degree) in the functional network, whereas regions that engaged in broader frequency ranges exhibited more segregated functions (i.e., lower network participation coefficient and higher within-module degree). Finally, behavioral analyses revealed that regional frequency variability was associated with a spectrum of behavioral functions from sensorimotor functions to complex cognitive and social functions. Taken together, our results showed that segregated functions are executed in wide frequency ranges, whereas integrated functions are executed mainly in lower frequency ranges. These frequency-specific features of brain networks provided crucial insights into the frequency mechanism of fMRI signals, suggesting that signals in higher frequency ranges should be considered for their relation to cognitive functions.
- References: Baria AT, Baliki MN, Parrish T, Apkarian AV (2011) Anatomical and functional assemblies of brain BOLD oscillations. J Neurosci 31:7910–7919. (PMID: 216135053114444)
Birn RM, Diamond JB, Smith MA, Bandettini PA (2006) Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. NeuroImage 31:1536–1548. (PMID: 16632379)
Birn RM, Smith MA, Jones TB, Bandettini PA (2008) The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration. NeuroImage 40:644–654. (PMID: 18234517)
Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541.
Boubela RN, Kalcher K, Huf W, Kronnerwetter C, Filzmoser P, Moser E (2013) Beyond noise: using temporal ICA to extract meaningful information from high-frequency fMRI signal fluctuations during rest. Front Hum Neurosci 7:168. (PMID: 236412083640215)
Braboszcz C, Delorme A (2011) Lost in thoughts: neural markers of low alertness during mind wandering. NeuroImage 54:3040–3047. (PMID: 20946963)
Bright MG, Tench CR, Murphy K (2017) Potential pitfalls when denoising resting state fMRI data using nuisance regression. NeuroImage 154:159–168. (PMID: 280251285489212)
Brooks JC, Beckmann CF, Miller KL, Wise RG, Porro CA, Tracey I, Jenkinson M (2008) Physiological noise modelling for spinal functional magnetic resonance imaging studies. NeuroImage 39:680–692. (PMID: 17950627)
Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929. (PMID: 15218136)
Chang C, Cunningham JP, Glover GH (2009) Influence of heart rate on the BOLD signal: the cardiac response function. NeuroImage 44:857–869. (PMID: 18951982)
Chen JE, Glover GH (2015) BOLD fractional contribution to resting-state functional connectivity above 0.1 Hz. NeuroImage 107:207–218. (PMID: 25497686)
Chen JE, Jahanian H, Glover GH (2017) Nuisance regression of high-frequency functional magnetic resonance imaging data: denoising can be noisy. Brain Connectivity 7:13–24. (PMID: 278759025312601)
Chen JE, Polimeni JR, Bollmann S, Glover GH (2019) On the analysis of rapidly sampled fMRI data. NeuroImage 188:807–820. (PMID: 307358286984348)
Christoff K, Gordon AM, Smallwood J, Smith R, Schooler JW (2009) Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proc Natl Acad Sci 106:8719–8724. (PMID: 19433790)
Cioli C, Abdi H, Beaton D, Burnod Y, Mesmoudi S (2014) Differences in human cortical gene expression match the temporal properties of large-scale functional networks. PLoS ONE 9:e115913. (PMID: 255460154278769)
Coifman RR, Lafon S, Lee AB, Maggioni M, Nadler B, Warner F, Zucker SW (2005) Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc Natl Acad Sci 102:7426–7431. (PMID: 15899970)
Collins CE, Airey DC, Young NA, Leitch DB, Kaas JH (2010) Neuron densities vary across and within cortical areas in primates. Proc Natl Acad Sci USA 107:15927–15932. (PMID: 20798050)
Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Meyerand ME (2001) Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. Am J Neuroradiol 22:1326–1333. (PMID: 11498421)
Crossley NA, Mechelli A, Vértes PE, Wintonbrown TT, Patel AX, Ginestet CE, Bullmore ET (2013) Cognitive relevance of the community structure of the human brain functional coactivation network. Proc Natl Acad Sci 110:11583–11588. (PMID: 23798414)
Curtis CE, D’Esposito M (2003) Persistent activity in the prefrontal cortex during working memory. Trends Cogn Sci 7:415–423. (PMID: 12963473)
Dai Z, Lin Q, Li T, Wang X, Yuan H, Yu X, Wang H (2019) Disrupted structural and functional brain networks in Alzheimer’s disease. Neurobiol Aging 75:71–82. (PMID: 30553155)
Dale AM (1999) Optimal experimental design for event-related fMRI. Hum Brain Mapp 8:109–114. (PMID: 105246016873302)
Davey CE, Grayden DB, Egan GF, Johnston LA (2013) Filtering induces correlation in fMRI resting state data. NeuroImage 64:728–740. (PMID: 22939874)
De Luca M, Beckmann C, De Stefano N, Matthews P, Smith SM (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. NeuroImage 29:1359–1367. (PMID: 16260155)
Desjardins AE, Kiehl KA, Liddle PF (2001) Removal of confounding effects of global signal in functional MRI analyses. NeuroImage 13:751–758. (PMID: 11305902)
Donner TH, Siegel M, Fries P, Engel AK (2009) Buildup of choice-predictive activity in human motor cortex during perceptual decision making. Curr Biol 19:1581–1585. (PMID: 19747828)
Feinberg DA, Moeller S, Smith SM, Auerbach E, Ramanna S, Glasser MF, Yacoub E (2010) Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS ONE 5:e15710. (PMID: 211879303004955)
Finn ES, Shen X, Scheinost D, Rosenberg MD, Huang J, Chun MM, Constable RT (2015) Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat Neurosci 18:1664–1671. (PMID: 264575515008686)
Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101:3270–3283. (PMID: 193394622694109)
Garcés P, Pereda E, Hernández-Tamames JA, Del-Pozo F, Maestú F, Ángel Pineda-Pardo J (2016) Multimodal description of whole brain connectivity: a comparison of resting state MEG, fMRI, and DWI. Hum Brain Mapp 37:20–34. (PMID: 26503502)
Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, Xu J, Jbabdi S, Webster M, Polimeni JR, Van Essen DC (2013) The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80:105–124. (PMID: 37208133720813)
Glover GH, Li TQ, Ress D (2000) Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44:162–167. (PMID: 10893535)
Gohel SR, Biswal BB (2015) Functional integration between brain regions at rest occurs in multiple-frequency bands. Brain Connectivity 5:23–34. (PMID: 247022464313418)
Guimera R, Amaral LAN (2005) Cartography of complex networks: modules and universal roles. J Stat Mech Theory Exp 2005:P02001.
Hallquist MN, Hwang K, Luna B (2013) The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. NeuroImage 82:208–225. (PMID: 23747457)
Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, van de Lagemaat LN, Smith KA, Ebbert A, Riley ZL, Abajian C, Beckmann CF, Bernard A, Bertagnolli D, Boe AF, Cartagena PM, Chakravarty MM, Chapin M, Chong J, Dalley RA, Jones AR (2012) An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489:391–399. (PMID: 229965534243026)
Hennig J, Zhong K, Speck O (2007) MR-encephalography: fast multi-channel monitoring of brain physiology with magnetic resonance. NeuroImage 34:212–219. (PMID: 17071111)
Hipp JF, Siegel M (2015) BOLD fMRI correlation reflects frequency-specific neuronal correlation. Curr Biol 25:1368–1374. (PMID: 25936551)
Huntenburg JM, Bazin PL, Margulies DS (2018) Large-scale gradients in human cortical organization. Trends Cogn Sci 22:21–31. (PMID: 29203085)
Larkman DJ, Hajnal JV, Herlihy AH, Coutts GA, Young IR, Ehnholm G (2001) Use of multicoil arrays for separation of signal from multiple slices simultaneously excited. J Magn Reson Imaging 13:313–317. (PMID: 11169840)
Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch C, Krakow K (2003) EEG-correlated fMRI of human alpha activity. NeuroImage 19:1463–1476. (PMID: 12948703)
Lee HL, Zahneisen B, Hugger T, LeVan P, Hennig J (2013) Tracking dynamic resting-state networks at higher frequencies using MR-encephalography. NeuroImage 65:216–222. (PMID: 23069810)
Leopold DA, Murayama Y, Logothetis NK (2003) Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. Cereb Cortex 13:422–433. (PMID: 12631571)
Lewis LD, Setsompop K, Rosen BR, Polimeni JR (2016) Fast fMRI can detect oscillatory neural activity in humans. Proc Natl Acad Sci 113:E6679–E6685. (PMID: 27729529)
Lin FH, Wald LL, Ahlfors SP, Hämäläinen MS, Kwong KK, Belliveau JW (2006) Dynamic magnetic resonance inverse imaging of human brain function. Magn Reson Med 56:787–802. (PMID: 16964616)
Lin FH, Chu YH, Hsu YC, Lin JFL, Tsai KWK, Tsai SY, Kuo WJ (2015) Significant feed-forward connectivity revealed by high frequency components of BOLD fMRI signals. NeuroImage 121:69–77. (PMID: 26208871)
Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157. (PMID: 11449264)
Macey PM, Macey KE, Kumar R, Harper RM (2004) A method for removal of global effects from fMRI time series. NeuroImage 22(1):360–366. (PMID: 15110027)
Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM, Langs G, Petrides M (2016) Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci 113:12574–12579. (PMID: 27791099)
Maris E, Fries P, van Ede F (2016) Diverse phase relations among neuronal rhythms and their potential function. Trends Neurosci 39:86–99. (PMID: 26778721)
Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN (2007) Wandering minds: the default network and stimulus-independent thought. Science 315:393–395. (PMID: 172349511821121)
Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J, Harel N, Uğurbil K (2010) Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn Reson Med 63:1144–1153. (PMID: 204322852906244)
Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage 44:893–905. (PMID: 10.1016/j.neuroimage.2008.09.03618976716)
Murray JD, Bernacchia A, Freedman DJ, Romo R, Wallis JD, Cai X, Lee D (2014) A hierarchy of intrinsic timescales across primate cortex. Nat Neurosci 17:1661. (PMID: 253839004241138)
Niazy RK, Xie J, Miller K, Beckmann CF, Smith SM (2011) Spectral characteristics of resting state networks. Prog Brain Res 193:259–276. (PMID: 21854968)
Penttonen M, Buzsáki G (2003) Natural logarithmic relationship between brain oscillators. Thalamus Relat Syst 2:145–152.
Power JD, Barnes K, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59:2142–2154. (PMID: 22019881)
Preti MG, Van De Ville D (2019) Decoupling of brain function from structure reveals regional behavioral specialization in humans. Nat Commun 10:4747. (PMID: 316283296800438)
Saad ZS, Gotts SJ, Murphy K, Chen G, Jo HJ, Martin A, Cox RW (2012) Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connectivity 2:25–32. (PMID: 224329273484684)
Salvador R, Martinez A, Pomarol-Clotet E, Gomar J, Vila F, Sarró S, Bullmore E (2008) A simple view of the brain through a frequency-specific functional connectivity measure. NeuroImage 39:279–289. (PMID: 17919927)
Siegel M, Donner TH, Engel AK (2012) Spectral fingerprints of large-scale neuronal interactions. Nat Rev Neurosci 13:121. (PMID: 22233726)
Smith-Collins AP, Luyt K, Heep A, Kauppinen RA (2015) High frequency functional brain networks in neonates revealed by rapid acquisition resting state fMRI. Hum Brain Mapp 36:2483–2494. (PMID: 257879316869609)
Sporns O (2013) Network attributes for segregation and integration in the human brain. Curr Opin Neurobiol 23:162–171. (PMID: 23294553)
Sporns O, Betzel RF (2016) Modular brain networks. Annu Rev Psychol 67:613–640. (PMID: 26393868)
Störmer VS, Feng W, Martinez A, McDonald JJ, Hillyard SA (2016) Salient, irrelevant sounds reflexively induce alpha rhythm desynchronization in parallel with slow potential shifts in visual cortex. J Cogn Neurosci 28:433–445. (PMID: 26696295)
Thompson WH, Fransson P (2015) The frequency dimension of fMRI dynamic connectivity: network connectivity, functional hubs and integration in the resting brain. NeuroImage 121:227–242. (PMID: 26169321)
Thompson GJ, Merritt MD, Pan WJ, Magnuson ME, Grooms JK, Jaeger D, Keilholz SD (2013) Neural correlates of time-varying functional connectivity in the rat. NeuroImage 83:826–836. (PMID: 23876248)
Thompson WH, Kastrati G, Finc K, Wright J, Shine JM, Poldrack RA (2019) Time-varying nodal measures with temporal community structure: a cautionary note to avoid misquantification. BioRxiv 659508.
Tomasi D, Volkow ND (2011) Functional connectivity hubs in the human brain. NeuroImage 57(3):908–917. (PMID: 216097693129362)
Tsushima Y, Sasaki Y, Watanabe T (2006) Greater disruption due to failure of inhibitory control on an ambiguous distractor. Science 314:1786–1788. (PMID: 17170308)
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15:273–289. (PMID: 11771995)
van den Heuvel MP, Sporns O (2013) Network hubs in the human brain. Trends Cogn Sci 17:683–696. (PMID: 24231140)
van den Heuvel MP, de Lange SC, Zalesky A, Seguin C, Yeo BT, Schmidt R (2017) Proportional thresholding in resting-state fMRI functional connectivity networks and consequences for patient-control connectome studies: Issues and recommendations. NeuroImage 152:437–449. (PMID: 28167349)
van Den Heuvel MP, Pol HEH (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20:519–534. (PMID: 20471808)
Van Dijk KRA, Sabuncu MR, Buckner RL (2012) The influence of head motion on in-trinsic functional connectivity MRI. NeuroImage 59:431–438. (PMID: 21810475)
Van Wijk BC, Stam CJ, Daffertshofer A (2010) Comparing brain networks of different size and connectivity density using graph theory. PLoS ONE 5:e13701. (PMID: 210608922965659)
van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K, Consortium WMH (2013) The WU-Minn human connectome project: an overview. NeuroImage 80:62–79. (PMID: 236848803724347)
Wagstyl K, Ronan L, Goodyer IM, Fletcher PC (2015) Cortical thickness gradients in structural hierarchies. NeuroImage 111:241–250. (PMID: 257254684401442)
Wang JH, Zuo XN, Gohel S, Milham MP, Biswal BB, He Y (2011) Graph theoretical analysis of functional brain networks: test-retest evaluation on short-and long-term resting-state functional MRI data. PLoS ONE 6:e21976. (PMID: 218182853139595)
Wang J, Wang X, Xia M, Liao X, Evans A, He Y (2015) GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci 9:386. (PMID: 261756824485071)
Wang Y, Zhu L, Zou Q, Cui Q, Liao W, Duan X, Chen H (2018) Frequency dependent hub role of the dorsal and ventral right anterior insula. NeuroImage 165:112–117. (PMID: 28986206)
Weissenbacher A, Kasess C, Gerstl F, Lanzenberger R, Moser E, Windischberger C (2009) Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. NeuroImage 47:1408–1416. (PMID: 19442749)
Welvaert M, Rosseel Y (2013) On the definition of signal-to-noise ratio and contrast-to-noise ratio for fMRI data. PLoS ONE 8:e77089. (PMID: 242231183819355)
Wu CW, Gu H, Lu H, Stein EA, Chen J-H, Yang Y (2008) Frequency specificity of functional connectivity in brain networks. NeuroImage 42:1047–1055. (PMID: 186322882612530)
Xia M, Wang J, He Y (2013) BrainNet Viewer: a network visualization tool for human brain connectomics. PLoS ONE 8:e68910. (PMID: 238619513701683)
Yan CG, Zang YF (2010) DPARSF: a MATLAB TOOLBOX for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci 4:13.
Yang GJ, Murray JD, Repovs G, Cole MW, Savic A, Glasser MF et al (2014) Altered global brain signal in schizophrenia. Proc Nat Acad Sci 111:7438–7443. (PMID: 24799682)
Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Buckner RL (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106:1125–1165. (PMID: 21653723)
Zahneisen B, Grotz T, Lee KJ, Ohlendorf S, Reisert M, Zaitsev M, Hennig J (2011) Three-dimensional MR-encephalography: fast volumetric brain imaging using rosette trajectories. Magn Reson Med 65:1260–1268. (PMID: 21294154)
Zalesky A, Fornito A, Harding IH, Cocchi L, Yücel M, Pantelis C, Bullmore ET (2010) Whole-brain anatomical networks: does the choice of nodes matter? NeuroImage 50:970–983. (PMID: 20035887)
Zhang J, Cheng W, Liu Z, Zhang K, Lei X, Yao Y, Lu G (2016) Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders. Brain 139:2307–2321. (PMID: 27421791)
Zuo XN, Di Martino A, Kelly C, Shehzad ZE, Gee DG, Klein DF, Castellanos FX, Biswal BB, Milham MP (2010) The oscillating brain: complex and reliable. NeuroImage 49:1432–1445. (PMID: 19782143)
Zuo XN, Ehmke R, Mennes M, Imperati D, Castellanos FX, Sporns O, Milham MP (2012) Network centrality in the human functional connectome. Cereb Cortex 22:1862–1875. (PMID: 21968567) - Grant Information: 19wkzd20 Fundamental Research Funds for the Central Universities; 20wkzd11 Fundamental Research Funds for the Central Universities; 81601559 National Natural Science Foundation of China; 61772569 National Natural Science Foundation of China; 2016A030310233 Natural Science Foundation of Guangdong Province (CN); 2019A1515012148 Guangdong Basic and Applied Basic Research Foundation
- Contributed Indexing: Keywords: Connectome; Frequency; Functional connectivity; Graph; Resting-state fMRI
- Publication Date: Date Created: 20210103 Date Completed: 20211025 Latest Revision: 20211025
- Publication Date: 20231215
- Accession Number: 10.1007/s00429-020-02174-8
- Accession Number: 33389041
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.