References: Bayliss WM, Starling EH. The movements and innervation of the small intestine. J Physiol. 1899;24:99-143.
Kim JH, Mittal RK, Patel N, et al. Esophageal distension during bolus transport: can it be detected by intraluminal impedance recordings? Neurogastroenterol Motil. 2014;26:1122-1130.
Zifan A, Ledgerwood-Lee M, Mittal RK. Measurement of peak esophageal luminal cross-sectional area utilizing nadir intraluminal impedance. Neurogastroenterol Motil. 2015;27:971-980.
Zifan A, Song HJ, Youn YH, et al. Topographical plots of esophageal distension and contraction: effects of posture on esophageal peristalsis and bolus transport. Am J Physiol Gastrointest Liver Physiol. 2019;316:G519-G526.
Fisher MA, Hendrix TR, Hunt JN, et al. Relation between volume swallowed and velocity of the bolus ejected from the pharynx into the esophagus. Gastroenterology. 1978;74:1238-1240.
Silny J. Intraluminal Multiple Electric Impedance Procedure for Measurement of Gastrointestinal Motility. Neurogastroenterol Motil. 1991;3:151-162.
Fass J, Silny J, Braun J, et al. Measuring Esophageal Motility with a New Intraluminal Impedance Device - First Clinical-Results in Reflux Patients. Scand J Gastroenterol. 1994;29:693-702.
Dreuw B, Fass J, Buchin P, et al. Combined pH measurement and multiple impedance variation assessments-validation of a new technique for detection of non-acid reflux in the esophagus. Langenbecks Arch Chir Suppl Kongressbd. 1998;115:1143-1145.
Pandolfino JE, Shi G, Zhang Q, et al. Measuring EGJ opening patterns using high resolution intraluminal impedance. Neurogastroenterol Motil. 2005;17:200-206.
Rao SS, Gregersen H, Hayek B, et al. Unexplained chest pain: the hypersensitive, hyperreactive, and poorly compliant esophagus. Ann Intern Med. 1996;124:950-958.
Wu PI, Sloan JA, Kuribayashi S, et al. Impedance in the evaluation of the esophagus. Ann NY Acad Sci. 2020;1481(1):139-153.
McMahon BP, O'Donovan D, Liao D, et al. Analysis of abdominal wounds made by surgical trocars using functional luminal imaging probe (FLIP) technology. Surg Innov. 2008;15:208-212.
Pouderoux P, Ergun GA, Lin S, et al. Esophageal bolus transit imaged by ultrafast computerized tomography. Gastroenterology. 1996;110:1422-1428.
Haralick RM. Glossary and Index to Remotely Sensed Image Pattern-Recognition Concepts. Pattern Recogn. 1973;5:391-403.
Flores WG, Pereira WCD, Infantosi AFC. Improving classification performance of breast lesions on ultrasonography. Pattern Recogn. 2015;48:1125-1136.
Gomez W, Pereira WCA, Infantosi AFC. Analysis of Co-Occurrence Texture Statistics as a Function of Gray-Level Quantization for Classifying Breast Ultrasound. IEEE Trans Med Imaging. 2012;31:1889-1899.
Lehman CD, Andre MP, Fecht BA, et al. Through-transmission US applied to breast imaging. Acad Radiol. 2000;7:100-107.
Sadeghi-Naini A, Suraweera H, Tran WT, et al. Breast-lesion characterization using textural features of quantitative ultrasound parametric maps. Sci Rep. 2017;7:13638.
Bland JM, Altman DG. Statistical Methods for Assessing Agreement between Two Methods of Clinical Measurement. Lancet. 1986;1:307-310.
Mittal RK, Muta K, Ledgerwood-Lee M, Zifan A, et al. Characteristics of Esophageal Distension During Primary Peristalsis: Effect of Bolus Volume, Bolus viscocity and Posture. Am J Physiol. 2020;319(4):G454-G461. https://journals.physiology.org/doi/full/10.1152/ajpgi.00117.2020.
Abrahao L Jr, Bhargava V, Babaei A, et al. Swallow induces a peristaltic wave of distension that marches in front of the peristaltic wave of contraction. Neurogastroenterol Motil. 2011;23:201-e110.
Kassab GS, Lontis ER, Gregersen H. Measurement of coronary lumen area using an impedance catheter: finite element model and in vitro validation. Ann Biomed Eng. 2004;32:1642-1653.
Kassab GS, Lontis ER, Horlyck A, et al. Novel method for measurement of medium size arterial lumen area with an impedance catheter: in vivo validation. Am J Physiol Heart Circ Physiol. 2005;288:H2014-H2020.
No Comments.