An engineered extraplastidial pathway for carotenoid biofortification of leaves.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley on behalf of the Society for Experimental Biology, Association of Applied Biologists Country of Publication: England NLM ID: 101201889 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1467-7652 (Electronic) Linking ISSN: 14677644 NLM ISO Abbreviation: Plant Biotechnol J Subsets: MEDLINE
    • Publication Information:
      Publication: 2014- : Oxford Wiley on behalf of the Society for Experimental Biology, Association of Applied Biologists
      Original Publication: [Oxford] : Blackwell Pub., c2003-
    • Subject Terms:
    • Abstract:
      Carotenoids are lipophilic plastidial isoprenoids highly valued as nutrients and natural pigments. A correct balance of chlorophylls and carotenoids is required for photosynthesis and therefore highly regulated, making carotenoid enrichment of green tissues challenging. Here we show that leaf carotenoid levels can be boosted through engineering their biosynthesis outside the chloroplast. Transient expression experiments in Nicotiana benthamiana leaves indicated that high extraplastidial production of carotenoids requires an enhanced supply of their isoprenoid precursors in the cytosol, which was achieved using a deregulated form of the main rate-determining enzyme of the mevalonic acid (MVA) pathway. Constructs encoding bacterial enzymes were used to convert these MVA-derived precursors into carotenoid biosynthetic intermediates that do not normally accumulate in leaves, such as phytoene and lycopene. Cytosolic versions of these enzymes produced extraplastidial carotenoids at levels similar to those of total endogenous (i.e. chloroplast) carotenoids. Strategies to enhance the development of endomembrane structures and lipid bodies as potential extraplastidial carotenoid storage systems were not successful to further increase carotenoid contents. Phytoene was found to be more bioaccessible when accumulated outside plastids, whereas lycopene formed cytosolic crystalloids very similar to those found in the chromoplasts of ripe tomatoes. This extraplastidial production of phytoene and lycopene led to an increased antioxidant capacity of leaves. Finally, we demonstrate that our system can be adapted for the biofortification of leafy vegetables such as lettuce.
      (© 2020 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.)
    • References:
      New Phytol. 2015 Apr;206(1):268-280. (PMID: 25414007)
      Plant Biotechnol J. 2021 May;19(5):1008-1021. (PMID: 33314563)
      Nature. 2013 Dec 5;504(7478):148-52. (PMID: 24213631)
      Sci Rep. 2019 Mar 6;9(1):3699. (PMID: 30842571)
      New Phytol. 2019 Jan;221(1):309-325. (PMID: 30067292)
      Biochim Biophys Acta Mol Cell Biol Lipids. 2020 Nov;1865(11):158664. (PMID: 32068105)
      Sci Rep. 2017 Jan 31;7:41645. (PMID: 28139696)
      Curr Biol. 2017 Oct 9;27(19):3034-3041.e3. (PMID: 28943084)
      Front Plant Sci. 2018 Nov 30;9:1778. (PMID: 30555505)
      Plant J. 2016 Oct;88(1):82-94. (PMID: 27288653)
      Mol Nutr Food Res. 2015 Apr;59(4):658-69. (PMID: 25620547)
      Plant J. 2016 Jan;85(1):107-19. (PMID: 26648446)
      Methods Mol Biol. 2014;1153:273-83. (PMID: 24777805)
      Metab Eng. 2019 Mar;52:243-252. (PMID: 30578862)
      Mol Plant. 2018 Jan 8;11(1):58-74. (PMID: 28958604)
      Plant Cell. 2013 Nov;25(11):4560-79. (PMID: 24249831)
      Mol Nutr Food Res. 2018 Nov;62(22):e1800703. (PMID: 30192047)
      J Exp Bot. 2018 Mar 24;69(7):1557-1568. (PMID: 29385595)
      Plant Physiol. 2017 May;174(1):56-72. (PMID: 28275147)
      PLoS One. 2019 Jan 4;14(1):e0203249. (PMID: 30608920)
      Subcell Biochem. 2016;79:311-43. (PMID: 27485228)
      Biotechnol Bioeng. 2004 Oct 20;88(2):168-75. (PMID: 15449291)
      J Exp Bot. 2018 Sep 14;69(20):4921-4933. (PMID: 29945243)
      Curr Opin Plant Biol. 2015 Jun;25:17-22. (PMID: 25909859)
      Plant Biotechnol J. 2018 Dec;16(12):1997-2006. (PMID: 29682901)
      Plant Cell. 2013 Feb;25(2):728-43. (PMID: 23404890)
      Prog Lipid Res. 2013 Oct;52(4):539-61. (PMID: 23896007)
      Plant Biotechnol J. 2020 May;18(5):1185-1199. (PMID: 31646753)
      J Phys Chem B. 2017 Aug 31;121(34):8046-8057. (PMID: 28817278)
      Plant Cell. 2011 Apr;23(4):1494-511. (PMID: 21478440)
      Food Funct. 2016 Mar;7(3):1354-66. (PMID: 26669648)
      Free Radic Biol Med. 1999 May;26(9-10):1231-7. (PMID: 10381194)
      Sci Rep. 2018 Mar 19;8(1):4755. (PMID: 29555968)
      Plant Cell. 2014 Jun 6;26(6):2524-2537. (PMID: 24907342)
      Prog Lipid Res. 2018 Apr;70:62-93. (PMID: 29679619)
      Plant Cell Rep. 2019 Jul;38(7):803-818. (PMID: 31079194)
      Planta. 2015 Sep;242(3):645-61. (PMID: 26202736)
      Nat Biotechnol. 2006 Nov;24(11):1441-7. (PMID: 17057703)
      Metab Eng. 2003 Oct;5(4):255-63. (PMID: 14642353)
      Phys Chem Chem Phys. 2018 Mar 28;20(13):8640-8646. (PMID: 29537023)
      Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21796-21803. (PMID: 32817419)
      Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):E5082-9. (PMID: 27506796)
      PLoS One. 2015 Sep 15;10(9):e0137266. (PMID: 26371478)
      Plant Biotechnol J. 2003 Mar;1(2):113-21. (PMID: 17147748)
      Plant Physiol. 1995 Dec;109(4):1337-1343. (PMID: 12228673)
      Elife. 2020 Jan 31;9:. (PMID: 32003746)
      Plant Physiol. 2016 Nov;172(3):1393-1402. (PMID: 27707890)
      Plant Direct. 2019 Mar 20;3(3):e00127. (PMID: 31245770)
      J Sci Food Agric. 2016 Mar 30;96(5):1562-70. (PMID: 25974114)
      PLoS Genet. 2017 Sep 22;13(9):e1007022. (PMID: 28937985)
      Plant Mol Biol. 2013 Sep;83(1-2):51-8. (PMID: 23479085)
      Plant Physiol. 2005 Aug;138(4):1842-52. (PMID: 16040651)
      Plant Physiol. 2015 Jul;168(3):899-914. (PMID: 26015445)
      Nat Protoc. 2006;1(4):2019-25. (PMID: 17487191)
      Biosci Biotechnol Biochem. 2007 Aug;71(8):2095-100. (PMID: 17690442)
      Science. 2016 Sep 16;353(6305):1237-40. (PMID: 27634524)
      Arch Biochem Biophys. 2015 Apr 15;572:188-200. (PMID: 25615528)
      Biotechnol J. 2015 Jan;10(1):180-9. (PMID: 25159317)
      Metab Eng. 2019 Mar;52:20-28. (PMID: 30389612)
      Plant Physiol Biochem. 2018 Sep;130:613-622. (PMID: 30121513)
      PLoS One. 2010 Dec 03;5(12):e14222. (PMID: 21151979)
      Subcell Biochem. 2016;79:111-39. (PMID: 27485220)
    • Contributed Indexing:
      Keywords: Nicotiana benthamiana; antioxidant; bioaccessibility; biofortification; biosynthesis; carotenoids; lettuce; lycopene; phytoene
    • Accession Number:
      36-88-4 (Carotenoids)
    • Publication Date:
      Date Created: 20201214 Date Completed: 20210628 Latest Revision: 20210628
    • Publication Date:
      20221213
    • Accession Number:
      PMC8131046
    • Accession Number:
      10.1111/pbi.13526
    • Accession Number:
      33314563