Reference Ranges, Diagnostic and Prognostic Utility of Native T1 Mapping and Extracellular Volume for Cardiac Amyloidosis: A Meta-Analysis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-Liss Country of Publication: United States NLM ID: 9105850 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1522-2586 (Electronic) Linking ISSN: 10531807 NLM ISO Abbreviation: J Magn Reson Imaging Subsets: MEDLINE
    • Publication Information:
      Publication: <2005-> : Hoboken , N.J. : Wiley-Liss
      Original Publication: Chicago, IL : Society for Magnetic Resonance Imaging, c1991-
    • Subject Terms:
    • Abstract:
      Background: Cardiac MRI is central to the evaluation of cardiac amyloidosis (CA). Native T 1 mapping and extracellular volume (ECV) are novel MR techniques with evolving utility in cardiovascular diseases, including CA.
      Purpose: To perform a meta-analysis of the diagnostic and prognostic data of native T 1 mapping and ECV techniques for assessing CA.
      Study Type: Systematic review and meta-analysis.
      Population: In all, 3520 patients including 1539 with CA from 22 studies retrieved following systematic search of Pubmed, Cochrane, and Embase.
      Field Strength/sequence: 1.5T or 3.0T/modified Look-Locker inversion recovery (MOLLI) or shortened MOLLI (shMOLLI) sequences.
      Assessment: Meta-analysis was performed for all CA and for light-chain (AL) and transthyretin (ATTR) subtypes. Thresholds were calculated to classify native T 1 and ECV values as not suggestive, indeterminate, or suggestive of CA.
      Statistical Analysis: Area under the receiver-operating characteristic curves (AUCs) and hazards ratios (HRs) with 95% confidence intervals (95% CI) were pooled using random-effects models and Open-Meta(Analyst) software.
      Results: Six studies were diagnostic, 16 studies reported T 1 and ECV values to determine reference range, and six were prognostic. Pooled AUCs (95% CI) for diagnosing CA were 0.92 (0.89-0.96) for native T 1 mapping and 0.96 (0.93-1.00) for ECV, with similarly high detection rates for AL- and ATTR-CA. Based on the pooled values of native T 1 and ECV in CA and control subjects, the thresholds that suggested the absence, indeterminate, or presence of CA were identified as <994 msec, 994-1073 msec, and >1073 msec, respectively, for native T 1 at 1.5T. Pooled HRs (95% CI) for predicting all-cause mortality were 1.15 (1.08-1.22) for native T 1 mapping as a continuous parameter, 1.19 (1.01-1.40) for ECV as a continuous parameter, and 4.93 (2.64-9.20) for ECV as a binary threshold.
      Data Conclusion: Native T 1 mapping and ECV had high diagnostic performance and predicted all-cause mortality in CA.
      Level of Evidence: 1 TECHNICAL EFFICACY STAGE: 2.
      (© 2020 International Society for Magnetic Resonance in Medicine.)
    • References:
      Merlini G, Bellotti V. Molecular mechanisms of amyloidosis. N Engl J Med 2003;349(6):583-596.
      Maleszewski JJ. Cardiac amyloidosis: Pathology, nomenclature, and typing. Cardiovasc Pathol 2015;24(6):343-350.
      Maurer MS, Schwartz JH, Gundapaneni B, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med 2018;379(11):1007-1016.
      Benson MD, Waddington-Cruz M, Berk JL, et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med 2018;379(1):22-31.
      Adams D, Gonzalez-Duarte A, O'Riordan WD, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 2018;379(1):11-21.
      Dorbala S, Ando Y, Bokhari S, et al. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 1 of 2-Evidence base and standardized methods of imaging. J Nucl Cardiol 2019;26(6):2065-2123.
      Dorbala S, Ando Y, Bokhari S, et al. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 2 of 2-Diagnostic criteria and appropriate utilization. J Nucl Cardiol 2019;26:2065-2123.
      Fine NM, Davis MK, Anderson K, et al. Canadian cardiovascular society/Canadian heart failure society joint position statement on the evaluation and management of patients with cardiac amyloidosis. Can J Cardiol 2020;36(3):322-334.
      van den Boomen M, Slart R, Hulleman EV, et al. Native T1 reference values for nonischemic cardiomyopathies and populations with increased cardiovascular risk: A systematic review and meta-analysis. J Magn Reson Imaging 2018;47(4):891-912.
      Pan JA, Lee YJ, Salerno M. Diagnostic performance of extracellular volume, native T1, and T2 mapping versus Lake Louise criteria by cardiac magnetic resonance for detection of acute myocarditis: A meta-analysis. Circ Cardiovasc Imaging 2018;11(7):e007598.
      Zhuang B, Sirajuddin A, Wang S, Arai A, Zhao S, Lu M. Prognostic value of T1 mapping and extracellular volume fraction in cardiovascular disease: A systematic review and meta-analysis. Heart Fail Rev 2018;23(5):723-731.
      Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med 2009;6(7):e1000097.
      Wallace B, Dahabreh I, Trikalinos T, Lau J, Trow P, Schmide C. Closing the gap between methodologists and end-users: R as a computational back-end. J Stat Softw 2012;49(5):1-14.
      Bland M. An introduction to medical statistics. 4th ed. Oxford, UK: Oxford University Press; 2015. p 446.
      Baggiano A, Boldrini M, Martinez-Naharro A, et al. Noncontrast magnetic resonance for the diagnosis of cardiac amyloidosis. J Am Coll Cardiol Img 2020;13(1 Pt 1):69-80.
      Fontana M, Banypersad SM, Treibel TA, et al. Native T1 mapping in transthyretin amyloidosis. J Am Coll Cardiol Img 2014;7(2):157-165.
      Karamitsos TD, Piechnik SK, Banypersad SM, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. J Am Coll Cardiol Img 2013;6(4):488-497.
      Martinez-Naharro A, Kotecha T, Norrington K, et al. Native T1 and extracellular volume in transthyretin amyloidosis. J Am Coll Cardiol Img 2019;12(5):810-819.
      Nam BD, Kim SM, Jung HN, Kim Y, Choe YH. Comparison of quantitative imaging parameters using cardiovascular magnetic resonance between cardiac amyloidosis and hypertrophic cardiomyopathy: Inversion time scout versus T1 mapping. Int J Cardiovasc Imaging 2018;34(11):1769-1777.
      Ridouani F, Damy T, Tacher V, et al. Myocardial native T2 measurement to differentiate light-chain and transthyretin cardiac amyloidosis and assess prognosis. J Cardiovasc Magn Reson 2018;20(1):58.
      Abulizi M, Sifaoui I, Wuliya-Gariepy M, et al. 18F-sodium fluoride PET/MRI myocardial imaging in patients with suspected cardiac amyloidosis. J Nucl Cardiol 2019. http://dx.doi.org/10.1007/s12350-019-01885-8 [online ahead of print].
      Avitzur N, Satriano A, Afzal M, et al. 3D myocardial deformation analysis from cine MRI as a marker of amyloid protein burden in cardiac amyloidosis: Validation versus T1 mapping. Int J Cardiovasc Imaging 2018;34(12):1937-1946.
      Barison A, Aquaro GD, Pugliese NR, et al. Measurement of myocardial amyloid deposition in systemic amyloidosis: Insights from cardiovascular magnetic resonance imaging. J Intern Med 2015;277(5):605-614.
      Bravo PE, Fujikura K, Kijewski MF, et al. Relative apical sparing of myocardial longitudinal strain is explained by regional differences in total amyloid mass rather than the proportion of amyloid deposits. J Am Coll Cardiol Img 2019;12(7 Pt 1):1165-1173.
      Duca F, Kammerlander AA, Panzenbock A, et al. Cardiac magnetic resonance T1 mapping in cardiac amyloidosis. J Am Coll Cardiol Img 2018;11(12):1924-1926.
      Fontana M, Pica S, Reant P, et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 2015;132(16):1570-1579.
      Gotschy A, von Deuster C, van Gorkum RJH, et al. Characterizing cardiac involvement in amyloidosis using cardiovascular magnetic resonance diffusion tensor imaging. J Cardiovasc Magn Reson 2019;21(1):56.
      Hosch W, Bock M, Libicher M, et al. MR-relaxometry of myocardial tissue: Significant elevation of T1 and T2 relaxation times in cardiac amyloidosis. Invest Radiol 2007;42(9):636-642.
      Liu JM, Liu A, Leal J, et al. Measurement of myocardial native T1 in cardiovascular diseases and norm in 1291 subjects. J Cardiovasc Magn Reson 2017;19(1):74.
      Mongeon FP, Jerosch-Herold M, Coelho-Filho OR, Blankstein R, Falk RH, Kwong RY. Quantification of extracellular matrix expansion by CMR in infiltrative heart disease. J Am Coll Cardiol Img 2012;5(9):897-907.
      Nitsche C, Aschauer S, Kammerlander AA, et al. Light-chain and transthyretin cardiac amyloidosis in severe aortic stenosis: prevalence, screening possibilities, and outcome. Eur J Heart Fail 2020;22:1852-1862.
      Orini M, Graham AJ, Martinez-Naharro A, et al. Noninvasive mapping of the electrophysiological substrate in cardiac amyloidosis and its relationship to structural abnormalities. J Am Heart Assoc 2019;8(18):e012097.
      Wan K, Li W, Sun J, et al. Regional amyloid distribution and impact on mortality in light-chain amyloidosis: A T1 mapping cardiac magnetic resonance study. Amyloid 2019;26(1):45-51.
      Banypersad SM, Fontana M, Maestrini V, et al. T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J 2015;36(4):244-251.
      Martinez-Naharro A, Treibel TA, Abdel-Gadir A, et al. Magnetic resonance in transthyretin cardiac amyloidosis. J Am Coll Cardiol 2017;70(4):466-477.
      Zhao L, Tian Z, Fang Q. Diagnostic accuracy of cardiovascular magnetic resonance for patients with suspected cardiac amyloidosis: A systematic review and meta-analysis. BMC Cardiovasc Disord 2016;16:129.
      Brownrigg J, Lorenzini M, Lumley M, Elliott P. Diagnostic performance of imaging investigations in detecting and differentiating cardiac amyloidosis: A systematic review and meta-analysis. ESC Heart Fail 2019;6(5):1041-1051.
      Wechalekar AD, Gillmore JD, Bird J, et al. Guidelines on the management of AL amyloidosis. Br J Haematol 2015;168(2):186-206.
      Kim YJ, Ha S, Kim YI. Cardiac amyloidosis imaging with amyloid positron emission tomography: A systematic review and meta-analysis. J Nucl Cardiol 2020;27(1):123-132.
      Raina S, Lensing SY, Nairooz RS, et al. Prognostic value of late gadolinium enhancement CMR in systemic amyloidosis. J Am Coll Cardiol Img 2016;9(11):1267-1277.
      Kellman P, Hansen MS. T1-mapping in the heart: Accuracy and precision. J Cardiovasc Magn Reson 2014;16(1):2.
    • Contributed Indexing:
      Keywords: T1-mapping; cardiac amyloidosis; extracellular volume; magnetic resonance imaging; meta-analysis
    • Accession Number:
      0 (Contrast Media)
    • Publication Date:
      Date Created: 20201204 Date Completed: 20210519 Latest Revision: 20210519
    • Publication Date:
      20221213
    • Accession Number:
      10.1002/jmri.27459
    • Accession Number:
      33274809