Menu
×
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 5:30 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 4 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 5:30 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 4 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Structural and mechanistic basis of the EMC-dependent biogenesis of distinct transmembrane clients.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Miller-Vedam LE;Miller-Vedam LE;Miller-Vedam LE;Miller-Vedam LE;Miller-Vedam LE; Bräuning B; Bräuning B; Popova KD; Popova KD; Popova KD; Popova KD; Schirle Oakdale NT; Schirle Oakdale NT; Bonnar JL; Bonnar JL; Bonnar JL; Prabu JR; Prabu JR; Boydston EA; Boydston EA; Sevillano N; Sevillano N; Shurtleff MJ; Shurtleff MJ; Stroud RM; Stroud RM; Craik CS; Craik CS; Schulman BA; Schulman BA; Frost A; Frost A; Weissman JS; Weissman JS; Weissman JS; Weissman JS
- Source:
ELife [Elife] 2020 Nov 25; Vol. 9. Date of Electronic Publication: 2020 Nov 25.- Publication Type:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Video-Audio Media- Language:
English - Source:
- Additional Information
- Source: Publisher: eLife Sciences Publications, Ltd Country of Publication: England NLM ID: 101579614 Publication Model: Electronic Cited Medium: Internet ISSN: 2050-084X (Electronic) Linking ISSN: 2050084X NLM ISO Abbreviation: Elife Subsets: MEDLINE
- Publication Information: Original Publication: Cambridge, UK : eLife Sciences Publications, Ltd., 2012-
- Subject Terms: Endoplasmic Reticulum/*metabolism ; Intracellular Membranes/*metabolism ; Membrane Proteins/*metabolism; Blotting, Western ; Humans ; Membrane Proteins/biosynthesis ; Membrane Proteins/genetics ; Protein Structure, Tertiary ; Saccharomyces cerevisiae/genetics ; Saccharomyces cerevisiae Proteins/biosynthesis ; Saccharomyces cerevisiae Proteins/genetics ; Saccharomyces cerevisiae Proteins/metabolism ; Sequence Alignment
- Abstract: Membrane protein biogenesis in the endoplasmic reticulum (ER) is complex and failure-prone. The ER membrane protein complex (EMC), comprising eight conserved subunits, has emerged as a central player in this process. Yet, we have limited understanding of how EMC enables insertion and integrity of diverse clients, from tail-anchored to polytopic transmembrane proteins. Here, yeast and human EMC cryo-EM structures reveal conserved intricate assemblies and human-specific features associated with pathologies. Structure-based functional studies distinguish between two separable EMC activities, as an insertase regulating tail-anchored protein levels and a broader role in polytopic membrane protein biogenesis. These depend on mechanistically coupled yet spatially distinct regions including two lipid-accessible membrane cavities which confer client-specific regulation, and a non-insertase EMC function mediated by the EMC lumenal domain. Our studies illuminate the structural and mechanistic basis of EMC's multifunctionality and point to its role in differentially regulating the biogenesis of distinct client protein classes.
Competing Interests: LM, BB, KP, NS, JB, JP, EB, NS, MS, RS, CC, BS, AF, JW No competing interests declared
(© 2020, Miller-Vedam et al.) - References: Biophys J. 2020 Apr 21;118(8):1887-1900. (PMID: 32272057)
Mol Biol Cell. 2019 Nov 1;30(23):2890-2900. (PMID: 31553680)
Proteins. 2009;77 Suppl 9:89-99. (PMID: 19701941)
Elife. 2016 Nov 15;5:. (PMID: 27845625)
Science. 1991 May 24;252(5009):1162-4. (PMID: 2031185)
EMBO Rep. 2017 Nov;18(11):1905-1921. (PMID: 29074503)
J Neurooncol. 2011 Apr;102(2):197-211. (PMID: 20680400)
Methods. 2011 Sep;55(1):94-106. (PMID: 21821126)
Nature. 2020 Aug;584(7821):475-478. (PMID: 32494008)
J Proteome Res. 2015 May 1;14(5):2036-45. (PMID: 25849460)
Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4628-33. (PMID: 23487760)
J Mol Biol. 2018 Jul 20;430(15):2237-2243. (PMID: 29258817)
Nature. 2000 Aug 10;406(6796):637-41. (PMID: 10949305)
Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):19943-19952. (PMID: 32759206)
Nat Protoc. 2015 Jun;10(6):845-58. (PMID: 25950237)
J Comput Chem. 2004 Oct;25(13):1605-12. (PMID: 15264254)
J Mol Biol. 1999 Sep 17;292(2):195-202. (PMID: 10493868)
J Cell Sci. 2019 Jan 16;132(2):. (PMID: 30578317)
Elife. 2018 May 29;7:. (PMID: 29809151)
J Struct Biol. 2016 Jan;193(1):1-12. (PMID: 26592709)
Nat Protoc. 2012 Feb 09;7(3):453-66. (PMID: 22322218)
Nat Methods. 2017 Mar;14(3):290-296. (PMID: 28165473)
Proc Natl Acad Sci U S A. 2017 Jul 25;114(30):E6127-E6136. (PMID: 28696314)
Methods Enzymol. 2009;464:211-31. (PMID: 19903557)
Science. 2019 Dec 13;366(6471):1372-1375. (PMID: 31831667)
J Struct Biol. 2001 May-Jun;134(2-3):204-18. (PMID: 11551180)
Traffic. 2002 Oct;3(10):730-9. (PMID: 12230471)
Elife. 2020 Aug 21;9:. (PMID: 32820719)
Elife. 2019 Sep 13;8:. (PMID: 31516121)
J Mol Biol. 2000 Sep 8;302(1):205-17. (PMID: 10964570)
Proteins. 2000 Aug 15;40(3):502-11. (PMID: 10861942)
Nat Protoc. 2010 Apr;5(4):725-38. (PMID: 20360767)
J Mol Biol. 2004 Mar 26;337(3):635-45. (PMID: 15019783)
J Mol Cell Biol. 2018 Dec 1;10(6):503-514. (PMID: 29659949)
Methods. 2011 Dec;55(4):303-9. (PMID: 21958987)
Nat Methods. 2015 Jan;12(1):7-8. (PMID: 25549265)
Nat Methods. 2018 Dec;15(12):1083-1089. (PMID: 30504871)
BMC Bioinformatics. 2008 Jan 23;9:40. (PMID: 18215316)
Nat Commun. 2019 Feb 8;10(1):672. (PMID: 30737405)
Nat Commun. 2020 Jul 3;11(1):3298. (PMID: 32620747)
Nat Commun. 2017 Feb 20;8:14516. (PMID: 28218252)
Structure. 2012 Apr 4;20(4):582-92. (PMID: 22483106)
Cell Death Differ. 2020 Feb;27(2):646-661. (PMID: 31263175)
Cell Rep. 2019 Apr 2;27(1):307-320.e5. (PMID: 30943411)
Elife. 2016 Dec 24;5:. (PMID: 28012275)
Acta Crystallogr D Struct Biol. 2018 Jun 1;74(Pt 6):531-544. (PMID: 29872004)
Nat Biotechnol. 2008 Dec;26(12):1367-72. (PMID: 19029910)
Cell Rep. 2019 Sep 3;28(10):2517-2526.e5. (PMID: 31484065)
Mol Cell. 2017 Aug 17;67(4):673-684.e8. (PMID: 28689662)
J Clin Invest. 2020 Feb 3;130(2):813-826. (PMID: 31904590)
J Struct Biol. 2017 May;198(2):124-133. (PMID: 28344036)
Nature. 2019 Jan;565(7740):516-520. (PMID: 30602789)
Cell. 2017 Oct 5;171(2):346-357.e12. (PMID: 28919078)
Structure. 2015 Sep 1;23(9):1559-1560. (PMID: 26331454)
Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4083-8. (PMID: 15016920)
Chem Rev. 2019 May 8;119(9):5537-5606. (PMID: 30608666)
Proc Natl Acad Sci U S A. 2016 May 10;113(19):E2564-9. (PMID: 27114506)
Front Mol Biosci. 2017 Oct 11;4:68. (PMID: 29075633)
Elife. 2015 Feb 26;4:. (PMID: 25715730)
Science. 2018 Jan 26;359(6374):470-473. (PMID: 29242231)
Nat Protoc. 2007;2(8):1896-906. (PMID: 17703201)
J Struct Biol. 2021 Jun;213(2):107702. (PMID: 33582281)
Nature. 2016 Sep 22;537(7621):508-514. (PMID: 27626380)
Chem Rev. 2019 May 8;119(9):5775-5848. (PMID: 30758191)
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. (PMID: 20383002)
J Biol Chem. 2019 Aug 23;294(34):12655-12669. (PMID: 31266804)
Bioessays. 1999 Nov;21(11):932-9. (PMID: 10517866)
J Struct Biol. 2014 Mar;185(3):418-26. (PMID: 24384117)
Elife. 2020 May 27;9:. (PMID: 32459176)
Nat Methods. 2013 Jun;10(6):584-90. (PMID: 23644547)
Science. 2020 Jul 24;369(6502):433-436. (PMID: 32439656)
J Struct Biol. 2005 Oct;152(1):36-51. (PMID: 16182563)
Biochemistry. 2002 Nov 19;41(46):13575-86. (PMID: 12427018)
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32. (PMID: 15572765)
Nat Protoc. 2018 Jan;13(1):79-98. (PMID: 29215632)
Cell. 2018 Nov 29;175(6):1507-1519.e16. (PMID: 30415835)
Bioinformatics. 2009 May 1;25(9):1189-91. (PMID: 19151095)
Acta Crystallogr D Struct Biol. 2019 Oct 1;75(Pt 10):861-877. (PMID: 31588918)
Am J Hum Genet. 2016 Mar 3;98(3):562-570. (PMID: 26942288)
Nat Protoc. 2008;3(12):1941-74. (PMID: 19180078)
Methods Enzymol. 1991;194:281-301. (PMID: 2005793)
Traffic. 2016 Jun;17(6):615-38. (PMID: 26947578)
Cell Rep. 2019 May 7;27(6):1666-1674.e4. (PMID: 31067454)
Science. 2009 Mar 27;323(5922):1693-7. (PMID: 19325107)
Cell Rep. 2016 Jun 28;16(1):232-246. (PMID: 27342126)
Elife. 2018 Nov 09;7:. (PMID: 30412051)
Nat Genet. 2021 May;53(5):638-649. (PMID: 33859415)
Genome Med. 2012 Dec 27;4(12):103. (PMID: 23270647)
Biochemistry. 1994 Mar 15;33(10):3038-49. (PMID: 8130217)
J Mol Biol. 2001 Jan 19;305(3):567-80. (PMID: 11152613)
Cell Stress Chaperones. 2018 Sep;23(5):1101-1115. (PMID: 29808299)
J Struct Biol. 2020 Aug 1;211(2):107545. (PMID: 32534144)
Mol Biosyst. 2011 Sep;7(9):2589-98. (PMID: 21731954)
Mol Biol Evol. 2007 Dec;24(12):2763-74. (PMID: 17905998)
BMC Bioinformatics. 2006 Apr 17;7:208. (PMID: 16618368)
Biochim Biophys Acta. 2016 Aug;1861(8 Pt B):924-927. (PMID: 26686281)
Nat Methods. 2020 Dec;17(12):1214-1221. (PMID: 33257830)
Biophys J. 2018 Jan 23;114(2):355-367. (PMID: 29401433)
Elife. 2013 Sep 10;2:e01456. (PMID: 24040512)
Crit Rev Biochem Mol Biol. 2019 Apr;54(2):103-118. (PMID: 31023093)
Nat Cell Biol. 2011 Nov 27;14(1):93-105. (PMID: 22119785)
Cell. 2014 Oct 23;159(3):647-61. (PMID: 25307932)
Nat Methods. 2017 Apr;14(4):331-332. (PMID: 28250466)
Science. 2018 Feb 9;359(6376):689-692. (PMID: 29348368)
J Cell Sci. 2020 Apr 24;133(8):. (PMID: 32332093)
Nature. 2011 May 19;473(7347):337-42. (PMID: 21593866)
Curr Opin Struct Biol. 2018 Aug;51:195-202. (PMID: 30173121)
Proteins. 2005;61 Suppl 7:176-182. (PMID: 16187360)
Nat Protoc. 2012 Jul 19;7(8):1511-22. (PMID: 22814390)
Protein Sci. 2000 Jun;9(6):1162-76. (PMID: 10892809)
Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):E1055-63. (PMID: 23431131)
Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14849-54. (PMID: 19706470)
Cell. 2000 Apr 14;101(2):199-210. (PMID: 10786835)
Nucleic Acids Res. 2019 Jan 8;47(D1):D1038-D1043. (PMID: 30445645)
Mol Cell. 2020 Oct 1;80(1):72-86.e7. (PMID: 32910895)
J Cell Biol. 2018 Sep 3;217(9):3109-3126. (PMID: 29941475)
Nat Protoc. 2014 Nov;9(11):2574-85. (PMID: 25299155)
Structure. 2013 Oct 8;21(10):1735-42. (PMID: 24035711)
Biochemistry. 2015 Dec 8;54(48):7120-31. (PMID: 26565746)
Sci Rep. 2014 Dec 03;4:7299. (PMID: 25466392)
Cold Spring Harb Perspect Biol. 2013 Aug 01;5(8):a013334. (PMID: 23906715)
Protein Sci. 2018 Jan;27(1):14-25. (PMID: 28710774)
J Clin Invest. 2017 Dec 1;127(12):4314-4325. (PMID: 29083321)
PLoS Biol. 2014 Oct 14;12(10):e1001969. (PMID: 25313861)
Genome Res. 2013 Feb;23(2):236-47. (PMID: 23105016)
Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):19713-19719. (PMID: 32759217)
Structure. 2015 Sep 1;23(9):1715-1724. (PMID: 26256539)
F1000Res. 2015 Aug 25;4:624. (PMID: 26512320)
Cell Rep. 2017 Dec 26;21(13):3708-3716. (PMID: 29281821) - Grant Information: R01 GM024485 United States GM NIGMS NIH HHS; S10 OD020054 United States OD NIH HHS; P30 CA082103 United States CA NCI NIH HHS; R01 GM129325 United States GM NIGMS NIH HHS; P41 CA196276 United States CA NCI NIH HHS; 55108523 United States HHMI Howard Hughes Medical Institute; GM24485 United States NH NIH HHS; P50 AI150476 United States AI NIAID NIH HHS; S10 OD021596 United States OD NIH HHS; R37 GM024485 United States GM NIGMS NIH HHS; S10 OD021741 United States OD NIH HHS; 1DP2OD017690-01 United States NH NIH HHS; P41 GM103311 United States GM NIGMS NIH HHS; 1P41CA196276-01 United States NH NIH HHS; T32 GM008284 United States GM NIGMS NIH HHS; P50AI150476 United States NH NIH HHS
- Contributed Indexing: Keywords: EMC; S. cerevisiae; cell biology; chaperone holdase; electron microscopy; endoplasmic reticulum; human; insertase; membrane protein biogenesis; molecular biophysics; structural biology
Local Abstract: [plain-language-summary] Cells are surrounded and contained by a plasma membrane consisting of a double layer of fats and proteins. These proteins monitor and facilitate the movement of food, oxygen and messages in and out of the cell, and help neighboring cells communicate. Membrane proteins are manufactured in a cell compartment called the endoplasmic reticulum. Cellular machines called ribosomes visit this compartment’s membrane to manufacture proteins that need to be secreted or embedded into the cell’s membranes. As these proteins are made, they are pulled into the endoplasmic reticulum so they can be folded correctly and inserted in the membrane. A cellular machine in this compartment’s membrane that aids this process is the endoplasmic reticulum membrane protein complex (EMC). Many steps can go wrong during protein assembly, so to control protein quality, the EMC has to accommodate the variety of complex physical features that proteins can have. To explore the activity of the EMC, Miller-Vedam, Bräuning, Popova et al. studied the normal structure of the EMC in both yeast and human cells grown in the lab. These snapshots of the complex in different species had a lot in common, including how the complex was arranged within and around the membrane. Next, Miller-Vedam, Bräuning, Popova et al. generated 50 mutant versions of the EMC in human cells to determine how changing different parts of the complex affected the production of three proteins that rely on the EMC to fold correctly. These proteins were an enzyme called squalene synthase, a signaling protein called the beta adrenergic receptor and sigma intracellular receptor 2, a protein involved in the regulation of cholesterol levels. Mutations in the section of the EMC outside of the endoplasmic reticulum, within the main cellular compartment, negatively impacted the stability of squalene synthase. This section of the EMC provides a platform where proteins can associate before entering the membrane. The part of EMC that spans the membrane contains both a fat-filled cavity and a cavity with a ‘door’ that is either open or closed. Mutations in this section disrupted the insertion of both squalene synthase and the beta adrenergic receptor into the membrane, a role performed by the cavity with the door. The specific role of the fat-filled cavity is still not fully understood, but a mutation affecting this cavity disrupts the correct production of all three proteins studied. The largest section of the complex, which sits inside the endoplasmic reticulum, protected proteins as they folded, ensuring they were not destroyed for being folded incorrectly before they were fully formed. Mutations in this part of the EMC negatively impacted the stability of sigma intracellular receptor 2 without negatively affecting the other proteins. This molecular dissection of the activity of the EMC provides insights into how membrane proteins are manufactured, stabilized, coordinated, and monitored for quality. These findings could contribute towards the development of new treatments for certain congenital diseases. For example, cystic fibrosis, retinitis pigmentosa, and Charcot-Marie-Tooth disease are all thought to be caused by mutations within membrane proteins that require the EMC during their production. - Accession Number: 0 (Membrane Proteins)
0 (Saccharomyces cerevisiae Proteins) - Publication Date: Date Created: 20201125 Date Completed: 20210318 Latest Revision: 20240331
- Publication Date: 20240331
- Accession Number: PMC7785296
- Accession Number: 10.7554/eLife.62611
- Accession Number: 33236988
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.