Relationship between litter size at birth and within-litter birth weight characteristics in laboratory mice as pilot animal for pig.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Ogawa S;Ogawa S; Satoh M; Satoh M
  • Source:
    Animal science journal = Nihon chikusan Gakkaiho [Anim Sci J] 2020 Jan-Dec; Vol. 91 (1), pp. e13488.
  • Publication Type:
    Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Wiley Country of Publication: Australia NLM ID: 100956805 Publication Model: Print Cited Medium: Internet ISSN: 1740-0929 (Electronic) Linking ISSN: 13443941 NLM ISO Abbreviation: Anim Sci J Subsets: MEDLINE
    • Publication Information:
      Publication: Richmond, Vic. : Wiley
      Original Publication: Tokyo, Japan : Japanese Society of Zootechnical Science [1999-
    • Subject Terms:
    • Abstract:
      We investigated the relationship between litter size at birth and within-litter birth weight (BW) characteristics of laboratory mice as a pilot mammal for pig. We obtained records of number born alive (NBA) and total and mean litter BW (LWB, MWB), and maximum and minimum values of within-litter BW (MaxIWB, MinIWB), range and standard deviation (Range, SDIWB), skewness (Skew), and kurtosis (Kurt) of within-litter BW for 656 litters at first parity. Pearson's correlations of NBA were highly positive with LWB (0.92), weakly negative with MWB (-0.31), MaxIWB (-0.19), and MinIBW (-0.33), and those of MWB were negligible with Range, SDIWB, Skew, and Kurt (-0.10 to 0.06). Estimated heritabilities, treated as dam traits, were 0.32 for NBA, 0.39 for LWB, 0.24 for MWB, 0.28 for MaxIWB, 0.05 for MinIWB, 0.16 for Range, 0.17 for SDIWB, and 0.00 for Skew and Kurt. Estimated genetic correlation between NBA and LWB was high (0.95). Therefore, LWB could be promising for efficiently improving NBA. The estimated genetic correlation of NBA was negligible with MWB (0.00), positive with MaxIWB (0.10), Range (0.48), and SDIWB (0.36), and negative with MinIWB (-0.36), suggesting that selection for increased NBA brings larger SDIWB and lighter MinIWB.
      (© 2020 Japanese Society of Animal Science.)
    • References:
      Arango, J., Misztal, I., Tsuruta, S., Culbertson, M., Holl, J. W., & Herring, W. (2006). Genetic study of individual preweaning mortality and birth weight in Large White piglets using threshold-linear models. Livestock Science, 101, 208-218. https://doi.org/10.1016/j.livprodsci.2005.11.011.
      Banville, M., Riquet, J., Bahon, D., Sourdioux, M., & Canario, L. (2014). Genetic parameters for litter size, piglet growth and sow’s early growth and body composition in the Chinese-European line Tai Zumu. Journal of Animal Breeding and Genetics, 132, 328-337. https://doi.org/10.1111/jbg.12122.
      Beniwal, B. K., Hastings, I. M., Thompson, R., & Hill, W. G. (1992). Estimation of changes in genetic parameters in selected lines of mice using REML with an animal model. 2. Body weight, body consumption and litter size. Heredity, 69, 361-371. https://doi.org/10.1038/hdy.1992.136.
      Berard, J., Kreuzer, M., & Bee, G. (2008). Effect of litter size and birth weight on growth, carcass and pork quality, and their relationship to postmortem proteolysis. Journal of Animal Science, 86, 2357-2368. https://doi.org/10.2527/jas.2008-0893.
      Bergsma, R., Kanis, E., Verstegen, M. W. A., & Knol, E. F. (2008). Genetic parameters and predicted selection results for maternal traits related to lactation efficiency in sows. Journal of Animal Science, 86, 1067-1080. https://doi.org/10.2527/jas.2007-0165.
      Bolet, G., Gaffeau, H., Joly, T., Theau-Clement, M., Faheres, J., Hurtaud, J., & Bodin, L. (2007). Genetic homogenization of birth weight in rabbits: Indirect selection response for uterine horn characteristics. Livestock Science, 111, 28-32. https://doi.org/10.1016/j.livsci.2006.11.012.
      Bünger, L., Lewis, R. M., Rothschild, M. F., Blasco, A., Renne, U., & Simm, G. (2005). Relationship between quantitative and reproductive fitness traits in animals. Philosophical Transactions of the Royal Society B, 360, 1489-1502. https://doi.org/10.1098/rstb.2005.1679.
      Camargo, E. G., Marques, D. B. D., Figueiredo, E. A. P., Silva, F. F., & Lopes, P. S. (2020). Genetic study of litter size and litter uniformity in Landrace pigs. Revista Brasileira De Zootecnia, 49, e20180295. https://doi.org/10.37496/rbz4920180295.
      Cameron, N. D. (1997). Selection indices and prediction of genetic merit in animal breeding. Chapter 7 Examples of selection objectives and criteria (p. 73). CAB International.
      Canario, L., Lundgren, H., Haandlykken, M., & Rydhmer, L. (2010). Genetics of growth in piglets and the association with homogeneity of body weight within litters. Journal of Animal Science, 88, 1240-1247. https://doi.org/10.2527/jas.2009-2056.
      Cowley, D. E., Pomp, D., Atchley, W. R., Eisen, E. J., & Hawkins-Brown, D. (1989). Impact of maternal uterine genotype on postnatal growth and adult body size in mice. Genetics, 122, 193-203.
      Damgaard, L. H., Rydhmer, L., Løvendahl, P., & Grandinson, K. (2003). Genetic parameters for within-litter variation in piglet birth weight and change in within-litter variation during suckling. Journal of Animal Science, 81, 604-610. https://doi.org/10.2527/2003.813604x.
      Diaz, J. A. C., Manzanilla, E. G., Diana, A., & Boyle, L. A. (2018). Cross-fostering implications for pig mortality, welfare and performance. Frontiers in Veterinary. Science, 5, 123. https://doi.org/10.3389/fvets.2018.00123.
      Formoso-Rafferty, N., Cervantes, I., Ibáñez-Escriche, N., & Gutiérrez, J. P. (2016). Correlated genetic trends for production and welfare traits in a mouse population divergently selected for birth weight environmental variability. Animal, 10, 1770-1777. https://doi.org/10.1017/S1751731116000860.
      Formoso-Rafferty, N., Cervantes, I., Ibáñez-Escriche, N., & Gutiérrez, J. P. (2017). Modulating birth weight in mice. Journal of Animal Science, 95, 531-537. https://doi.org/10.2527/jas.2016.1169.
      Gunsett, F. C. (1987). Merit of utilizing the heritability of a ratio to predict the genetic change of a ratio. Journal of Animal Science, 65, 936-942. https://doi.org/10.2527/jas1987.654936x.
      Gutiérrez, J. P., Nieto, B., Piqueras, P., Ibáñez, N., & Salgado, C. (2006). Genetic parameters for canalization analysis of litter size and litter weight at birth in mice. Genetics Selection Evolution, 38, 445-462. https://doi.org/10.1186/1297-9686-38-5-445.
      Hermesch, S., Luxford, B. G., & Graser, H. U. (2000). Genetic parameters for lean meat yield, meat quality, reproduction and feed efficiency traits for Australian pigs: 3. Genetic parameters for reproduction traits and genetic correlations with production, carcase and meat quality traits. Livestock Production Science, 69, 179-186. https://doi.org/10.1016/S0301-6226(00)00152-4.
      Holt, M., Meuwissen, T., & Vangen, O. (2005). Long-term responses, changes in genetic variances and inbreeding depression from 122 generations of selection on increased litter size in mice. Journal of Animal Breeding and Genetics, 122, 199-209. https://doi.org/10.1111/j.1439-0388.2005.00526.x.
      Holt, M., Vangen, O., & Farstad, W. (2004). Components of litter size in mice after 110 generations of selection. Reproduction, 127, 587-592. https://doi.org/10.1530/rep.1.00118.
      Inoue, K., Valente, B. D., Shoji, N., Honda, T., Oyama, K., & Rosa, G. J. M. (2016). Inferring phenotypic causal structures among meat quality traits and the application of a structural equation model in Japanese Black cattle. Journal of Animal Science, 94, 4133-4142. https://doi.org/10.2527/jas2016-0554.
      Ishii, K., Kadowaki, K., Nishiura, A., Sasaki, O., & Satoh, M. (2010). Estimated of genetic parameters for the number of born alive at different parities in Large White and Landrace pigs. Proceedings of the 9th World Congress on Genetics Applied to Livestock Production, 1st-6th of August, Leipzig, Germany, pdf No.0770.
      Iung, L. K. S., Carvalheiro, R., Neves, H. H. R., & Mulder, H. A. (2020). Genetics and genomics of uniformity and resilience in livestock and aquaculture species: A review. Journal of Animal Breeding and Genetics, 137, 263-280. https://doi.org/10.1111/jbg.12454.
      Iwaisaki, H., & Wilton, J. W. (1993). Regression of genotypic value of a ratio-defined character. Biometrics, 49, 1154-1163. https://doi.org/10.2307/2532257.
      Kapell, D. N. R. G., Ashworth, C. J., Knap, P. W., & Roehe, R. (2011). Genetic parameters for piglet survival, litter size and birth weight or its variation within litter in sire and dam lines using Bayesian analysis. Livestock Science, 135, 215-224. https://doi.org/10.1016/j.livsci.2010.07.005.
      Klei, B., & Tsuruta, S. (2008). Approximate variance for heritability estimates. 2020. http://nce.ads.uga.edu/~shogo/html/research/AI_SE.pdf.
      Knol, E. F., Ducro, B. J., van Arendonk, J. A. M., & van der Lende, T. (2002). Direct, maternal and nurse sow genetic effects on farrowing-, pre-weaning- and total piglet survival. Livestock Production Science, 73, 153-164. https://doi.org/10.1016/S0301-6226(01)00248-2.
      Konta, A., Ogawa, S., Kimata, M., Ishii, K., Uemoto, Y., & Satoh, M. (2020). Comparison of two models to estimate genetic parameters for number of born alive in pigs. Animal Science Journal, 91, e13417. https://doi.org/10.1111/asj.13417.
      Leamy, L. J., Elo, K., Nielsen, M. K., Van Vleck, L. D., & Pomp, D. (2005). Genetic variance and covariance patterns for body weight and energy balance characters in an advanced intercross population of mice. Genetics Selection Evolution, 37, 151-173. https://doi.org/10.1186/1297-9686-37-3-151.
      Lund, M. S., Puonti, M., Rydhmer, L., & Jensen, J. (2002). Relationship between litter size and perinatal and pre-weaning survival in pigs. Animal Science, 74, 217-222. https://doi.org/10.1017/S1357729800052383.
      Luxford, B. G., & Beilharz, R. G. (1990). Selection response for litter size at birth and litter weight at weaning in the first parity in mice. Theoretical and Applied Genetics, 80, 625-630. https://doi.org/10.1007/BF00224221.
      Matheson, S. M., Walling, G. A., & Edwards, S. A. (2018). Genetic selection against intrauterine growth retardation in piglets: A problem at the piglet level with a solution at the sow level. Genetics Selection Evolution, 50, 46. https://doi.org/10.1186/s12711-018-0417-7.
      Milligan, B. N., Fraser, D., & Kramer, D. L. (2002). Within-litter birth weight variation in the domestic pig and its relation to pre-weaning survival, weight gain, and variation in weaning weights. Livestock Production Science, 76, 181-191. https://doi.org/10.1016/S0301-6226(02)00012-X.
      Misztal, I., Tsuruta, S., Strabel, T., Auvray, B., Druet, T., & Lee, D. H. (2002). BLUPF90 and related programs. Proceedings of the Seventh World Congress of Genetics Applied to Livestock Production, Montpellier, France.
      Nishida, A., Shinohara, H., Ohtomo, Y., & Suzuki, K. (2005). A method for evaluating the change in genetic constitution of pig line. The Japanese Journal of Swine Science, 42, 34-36. https://doi.org/10.5938/youton.42.34.
      Ogawa, S., Konta, A., Kimata, M., Ishii, K., Uemoto, Y., & Satoh, M. (2019a). Estimation of genetic parameters for farrowing traits in purebred Landrace and Large White pigs. Animal Science Journal, 90, 23-28. https://doi.org/10.1111/asj.13120.
      Ogawa, S., Konta, A., Kimata, M., Ishii, K., Uemoto, Y., & Satoh, M. (2019b). Genetic parameter estimation for number born alive at different parities in Landrace and Large White pigs. Animal Science Journal, 90, 1111-1119. https://doi.org/10.1111/asj.13252.
      Ogawa, S., Konta, A., Kimata, M., Ishii, K., Uemoto, Y., & Satoh, M. (2019c). Genetic relationship of litter traits between farrowing and weaning in Landrace and Large White pigs. Animal Science Journal, 90, 1510-1516. https://doi.org/10.1111/asj.13304.
      Okamura, T., Ishii, K., Nishio, M., Rosa, G. J. M., Satoh, M., & Sasaki, O. (2020). Inferring phenotypic causal structure among farrowing and weaning traits in pigs. Animal Science Journal, 91, e13369. https://doi.org/10.1111/asj.13369.
      Pearson, K. (1897). On a form of spurious correlation which may arise when indices are used in the measurement of organs. Proceedings of the Royal Society of London, 60, 489-498. https://doi.org/10.1098/rspl.1896.0076.
      Pun, A., Cervantes, I., Nieto, B., Salgado, C., Pérez-Cabal, M. A., Ibáñez-Escriche, N., & Gutiérrez, J. P. (2013). Genetic parameters for birthweight environmental variability in mice. Journal of Animal Breeding and Genetics, 130, 404-414. https://doi.org/10.1111/jbg.12021.
      Quiniou, N., Dagorn, J., & Gaudré, D. (2002). Variation of piglets’ birth weight and consequences on subsequent performance. Livestock Production Science, 28, 63-70. https://doi.org/10.1016/S0301-6226(02)00181-1.
      Roehe, R., & Kalm, E. (2000). Estimation of genetic and environmental risk factors associated with pre-weaning mortality in piglets using generalized linear mixed models. Animal Science, 70, 227-240. https://doi.org/10.1017/S1357729800054692.
      Rydhmer, L., Johannsson, K., Stern, S., & Eliasson-Selling, L. (1992). A genetic study of pubertal age, litter traits, weight loss during lactation and relations to growth and leanness in gilts. Acta Agriculturae Scandinavica, Section A - Animal Science, 42, 211-219. https://doi.org/10.1080/09064709209410131.
      Sales, J., & Hill, W. G. (1976a). Effect of sampling errors on efficiency of selection indices. 1. Use of information from relatives for single trait improvement. Animal Science, 22, 1-17. https://doi.org/10.1017/S0003356100035364.
      Sales, J., & Hill, W. G. (1976b). Effect of sampling errors on efficiency of selection indices. 2. Use of information on associated traits for improvement of a single important trait. Animal Science, 23, 1-14. https://doi.org/10.1017/S0003356100031020.
      Satoh, M. (2000). A program for computing inbreeding coefficients from large data sets. Japanese Journal of Swine Science, 37, 122-126. https://doi.org/10.5938/youton.37.122.
      Satoh, M. (2006). Comparison of genetic improvement for litter size at birth by direct and indirect selection in swine herd. Animal Science Journal, 77, 566-573. https://doi.org/10.1111/j.1740-0929.2006.00387.x.
      Schroderus, E., Koivula, M., Koskela, E., Mappes, T., Oksanen, T. A., & Poikonen, T. (2012). Can number and size of offspring increase simultaneously? - a central life-history trade-off reconsidered. BMC Evolutionary Biology, 12, 44. https://doi.org/10.1186/1471-2148-12-44.
      Sivanadian, B., & Smith, C. (1997). The effect of adding further traits in index selection. Journal of Animal Science, 75, 2016-2023. https://doi.org/10.2527/1997.7582016x.
      Smith, C. C., & Fretwell, S. D. (1974). The optimal balance between size and number of offspring. The American Naturalist, 108, 499-506. https://doi.org/10.1086/282929.
      Sutherland, T. M. (1965). The correlation between feed efficiency and rate of gain, a ratio and its denominator. Biometrics, 21, 739-749. https://doi.org/10.2307/2528555.
      Thompson, R., & Mayer, K. (1986). A review of theoretical aspects in the estimation of breeding values for multi-trait selection. Livestock Production Science, 15, 299-313. https://doi.org/10.1016/0301-6226(86)90071-0.
      Valente, B. D., Rosa, G. J. M., de los Campos, G., Gianola, D., & Silva, M. A. (2010). Searching for recursive causal structures in multivariate quantitative genetics mixed models. Genetics, 185, 633-644. https://doi.org/10.1534/genetics.109.112979.
      Van der Lende, T., & de Jager, D. (1991). Death risk and preweaning growth rate of piglets in relation to the within-litter weight distribution at birth. Livestock Production Science, 28, 73-84. https://doi.org/10.1016/0301-6226(91)90056-V.
      Wattanaphansak, S., Luengyoskuechakul, S., Karriestra, A., & Deen, J. (2002). The impact of cross-fostering on swine production. Thai Journal of Veterinary Medicine, 32, 101-106.
      Weber, E. M., Algers, B., Wurbel, H., Hultgren, J., & Olsson, I. A. (2013). Influence of strain and parity on the risk of litter loss in laboratory mice. Reproduction in Domestic Animals, 48, 292-296. https://doi.org/10.1111/j.1439-0531.2012.02147.x.
      Wittenburg, D., Guiard, V., Teuscher, F., & Reinsch, N. (2008). Comparison of statistical models to analyse the genetic effect on within-litter variance in pigs. Animal, 2, 1559-1568. https://doi.org/10.1017/S1751731108002851.
      Wolf, J., Žáková, E., & Groeneveld, E. (2008). Within-litter variation of birth weight in hyperprolific Czech Large White sows and its relation to litter size traits, stillborn piglets and losses until weaning. Livestock Science, 115, 195-205. https://doi.org/10.1016/j.livsci.2007.07.009.
      Zhang, T., Wang, L., Shi, H., Yan, H., Zhang, L., Liu, X., & Wang, L. (2016). Heritabilities and genetic and phenotypic correlations of litter uniformity and litter size in Large White sows. Journal of Integrative Agriculture, 15, 848-854. https://doi.org/10.1016/S2095-3119(15)61155-8.
    • Contributed Indexing:
      Keywords: birth weight; genetic parameter estimation; laboratory mice; litter size at birth; pig
    • Publication Date:
      Date Created: 20201122 Date Completed: 20201130 Latest Revision: 20230331
    • Publication Date:
      20240829
    • Accession Number:
      10.1111/asj.13488
    • Accession Number:
      33222366