Emerging role of CCN family proteins in fibrosis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Sun C;Sun C; Zhang H; Zhang H; Liu X; Liu X
  • Source:
    Journal of cellular physiology [J Cell Physiol] 2021 Jun; Vol. 236 (6), pp. 4195-4206. Date of Electronic Publication: 2020 Nov 22.
  • Publication Type:
    Journal Article; Research Support, Non-U.S. Gov't; Review
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Wiley-Liss Country of Publication: United States NLM ID: 0050222 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-4652 (Electronic) Linking ISSN: 00219541 NLM ISO Abbreviation: J Cell Physiol Subsets: MEDLINE
    • Publication Information:
      Publication: New York, NY : Wiley-Liss
      Original Publication: Philadelphia, Wistar Institute of Anatomy and Biology.
    • Subject Terms:
    • Abstract:
      Fibrosis is a common pathological change characterized by the excessive accumulation of fibrous connective tissue. Once uncontrolled, this pathological progress can lead to irreversible damage to the structure and function of organs, which is a serious threat to human health and life. Actually, the disability and death of patients caused by many chronic diseases have a closed relationship with fibrosis. The CCN protein family, including six members, is a small group of matrix proteins exhibiting structurally similar features. In the past 20 years, different biological functions of CCN proteins have been identified in various diseases. Of note, it has been recently shown that they are implicated in the key pathological process of fibrosis. In this review, we summarize the current status of knowledge regarding the role of CCN proteins involved in the pathogenesis of fibrosis diseases in detail. Furthermore, we highlight some of the underlying interaction mechanisms of CCN protein acting in fibrosis that helps to develop new drugs and determine appropriate clinical strategies for fibrotic diseases.
      (© 2020 Wiley Periodicals LLC.)
    • References:
      Abd El Kader, T., Kubota, S., Janune, D., Nishida, T., Hattori, T., Aoyama, E., Perbal, B., Kuboki, T., & Takigawa, M. (2013). Anti-fibrotic effect of CCN3 accompanied by altered gene expression profile of the CCN family. Journal of Cell Communication and Signaling, 7(1), 11-18.
      Abreu, J. G., Ketpura, N. I., Reversade, B., & De Robertis, E. M. (2002). Conne-ctive-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta. Nature Cell Biology, 4(8), 599-604.
      Adams, J. C. (2018). Matricellular proteins: Functional insights from non-mammalian animal models. Current Topics in Developmental Biology, 130, 39-105.
      Bai, T., Chen, C. C., & Lau, L. F. (2010). Matricellular protein CCN1 activates a proinflammatory genetic program in murine macrophages. Journal of Immunology, 184(6), 3223-3232.
      Barbe, M. F., Hilliard, B. A., Amin, M., Harris, M. Y., Hobson, L. J., Cruz, G. E., & Popoff, S. N. (2020). Blocking CTGF/CCN2 reduces established skeletal muscle fibrosis in a rat model of overuse injury. Federation of American Societies for Experimental Biology Journal, 34(5), 6554-6569.
      Barbe, M. F., Hilliard, B. A., Delany, S. P., Iannarone, V. J., Harris, M. Y., Amin, M., Cruz, G. E., Barreto-Cruz, Y., Tran, N., Day, E. P., Hobson, L. J., Assari, S., & Popoff, S. N. (2019). Blocking CCN2 reduces progression of sensorimotor declines and fibrosis in a rat model of chronic repetitive overuse. Journal of Orthopaedic Research, 37(9), 2004-2018.
      Barczyk, M., Carracedo, S., & Gullberg, D. (2010). Integrins. Cell and Tissue Research, 339(1), 269-280.
      Barreto, S. C., Ray, A., & Ag Edgar, P. (2016). Biological characteristics of CCN proteins in tumor development. Journal of B.U.ON.: Official Journal of the Balkan Union of Oncology, 21(6), 1359-1367.
      Batmunkh, R., Nishioka, Y., Aono, Y., Azuma, M., Kinoshita, K., Kishi, J., Makino, H., Kishi, M., Takezaki, A., & Sone, S. (2011). CCN6 as a profibrotic mediator that stimulates the proliferation of lung fibroblasts via the integrin β1/focal adhesion kinase pathway. Journal of Medical Investigation, 58(3-4), 188-196.
      Berschneider, B., Ellwanger, D. C., Baarsma, H. A., Thiel, C., Shimbori, C., White, E. S., Kolb, M., Neth, P., & Königshoff, M. (2014). miR-92a regulates TGF-beta1-induced WISP1 expression in pulmonary fibrosis. International Journal of Biochemistry and Cell Biology, 53, 432-441.
      Bonda, T. A., Kamiński, K. A., Dziemidowicz, M., Litvinovich, S., Kożuch, M., Hirnle, T., Dmitruk, I., Chyczewski, L., & Winnicka, M. M. (2012). Atrial expression of the CCN1 and CCN2 proteins in chronic heart failure. Folia Histochemica et Cytobiologica, 50(1), 99-103.
      Bonda, T. A., Kożuch, M., Litvinovich, S., Bialuk, I., Taranta, A., Lipiec, P., Szymczyk, E., Musiał, W. J., Winnicka, M. M., & Kamiński, K. A. (2015). Transcriptional and post-transcriptional regulation of CCN genes in failing heart. Pharmacological Reports, 67(2), 204-208.
      Bonda, T. A., Taranta, A., Kaminski, K. A., Dziemidowicz, M., Litvinovich, S., Kozuch, M., Bialuk, I., Chyczewski, L., & Winnicka, M. M. (2013). CCN1 expression in interleukin-6 deficient mouse kidney in experimental model of heart failure. Folia Histochemica et Cytobiologica, 51(1), 84-91.
      Borkham-Kamphorst, E., Huss, S., Van de Leur, E., Haas, U., & Weiskirchen, R. (2012). Adenoviral CCN3/NOVgene transfer fails to mitigate liver fibrosis in an experimental bile duct ligation model because of hepatocyte apoptosis. Liver International, 32(9), 1342-1353.
      Borkham-Kamphorst, E., Schaffrath, C., Van de Leur, E., Haas, U., Tihaa, L., Meurer, S. K., Nevzorova, Y. A., Liedtke, C., & Weiskirchen, R. (2014). The anti-fibrotic effects of CCN1/CYR61 in primary portal myofibroblasts are mediated through induction of reactive oxygen species resulting in cellular senescence, apoptosis and attenuated TGF-β signaling. Biochimica et Biophysica Acta/General Subjects, 1843(5), 902-914.
      Borkham-Kamphorst, E., Steffen, B. T., Van de Leur, E., Haas, U., Tihaa, L., Friedman, S. L., & Weiskirchen, R. (2016). CCN1/CYR61 overexpression in hepatic stellate cells induces ER stress-related apoptosis. Cellular Signalling, 28(1), 34-42.
      Borkham-Kamphorst, E., Steffen, B. T., Van de Leur, E., Haas, U., & Weiskirchen, R. (2018). Portal myofibroblasts are sensitive to CCN-mediated endoplasmic reticulum stress-related apoptosis with potential to attenuate biliary fibrogenesis. Cellular Signalling, 51, 72-85.
      Borkham-Kamphorst, E., Steffen, B. T., Van de Leur, E., Tihaa, L., Haas, U., Woitok, M. M., Meurer, S. K., & Weiskirchen, R. (2016). Adenoviral CCN gene transfers induce in vitro and in vivo endoplasmic reticulum stress and unfolded protein response. Biochimica et Biophysica Acta/General Subjects, 1863(11), 2604-2612.
      Borkham-Kamphorst, E., van Roeyen, C. R., Van de Leur, E., Floege, J., & Weiskirchen, R. (2012). CCN3 small interfering RNA enhances fibrogenic gene expression in primary hepatic stellate cells and cirrhotic fat storing cell line CFSC. Journal of Cell Communication and Signaling, 6(1), 11-25.
      Bornstein, P. (1995). Diversity of function is inherent in matricellular proteins: An appraisal of thrombospondin 1. Journal of Cell Biology, 130(3), 503-506.
      Bradham, D. M., Igarashi, A., Potter, R. L., & Grotendorst, G. R. (1991). Connective tissue growth factor: A cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. Journal of Cell Biology, 114(6), 1285-1294.
      Brigstock, D. R. (1990). The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family. Endocrine Reviews, 20(2), 189-206.
      Brigstock, D. R. (2003). Proposal for a unified CCN nomenclature. Molecular Pathology, 56(2), 127-128.
      Butler, G. S., Connor, A. R., Sounni, N. E., Eckhard, U., Morrison, C. J., Noël, A., & Overall, C. M. (2017). Degradomic and yeast 2-hybrid inactive catalytic domain substrate trapping identifies new membrane-type 1 matrix metalloproteinase (MMP14) substrates: CCN3 (Nov) and CCN5 (WISP2). Matrix Biology, 59, 23-38.
      Cai, Q., Chen, F., Xu, F., Wang, K., Zhang, K., Li, G., Chen, J., Deng, H., & He, Q. (2020). Epigenetic silencing of microRNA-125b-5p promotes liver fibrosis in nonalcoholic fatty liver disease via integrin α8-mediated activation of RhoA signaling pathway. Metabolism: Clinical and Experimental, 104, 154140.
      Che, H., Wang, Y., Li, Y., Lv, J., Li, H., Liu, Y., & Wang, L. (2019). Inhibition of microRNA-150-5p alleviates cardiac inflammation and fibrosis via targeting Smad7 in high glucose-treated cardiac fibroblasts. Journal of Cellular Physiology, 235(11), 7769-7779.
      Chen, L., & Brigstock, D. R. (2017). Analysis of pathological activities of CCN proteins in fibrotic diseases: Liver fibrosis. Methods in Molecular Biology, 1489, 445-463.
      Chen, C. C., & Lau, L. F. (2009). Functions and mechanisms of action of CCN matricellular proteins. International Journal of Biochemistry and Cell Biology, 41(4), 771-783.
      Chen, C. C., Mo, F. E., & Lau, L. F. (2010). The angiogenic inducer Cyr61 induces a genetic program for wound healing in human skin fibroblasts. Journal of Biological Chemistry, 276(50), 47329-47337.
      Chen, L., Wu, Y. G., Liu, D., Lv, L. L., Zheng, M., Ni, H. F., Cao, Y. H., Liu, H., Zhang, P., Zhang, J. D., & Liu, B. C. (2012). Urinary mRNA expression of CCN2/CCN3 as a noninvasive marker for monitoring glomerular structure changes in nondiabetic chronic kidney disease. Biomarkers, 17(8), 714-720.
      Chen, M., Li, H., Wang, G., Shen, X., Zhao, S., & Su, W. (2016). Atorvastatin prevents advanced glycation end products (AGEs)-induced cardiac fibrosis via activating peroxisome proliferator-activated receptor gamma (PPAR-γ). Metabolism: Clinical and Experimental, 65(4), 441-453.
      Chen, C. C., Young, J. L., Monzon, R. I., Chen, N., Todorovic, V., & Lau, L. F. (2007). Cytotoxicity of TNFalpha is regulated by integrin-mediated matrix signaling. EMBO Journal, 26(5), 1257-1267.
      Colston, J. T., de la Rosa, S. D., Koehler, M., Gonzales, K., Mestril, R., Freeman, G. L., Bailey, S. R., & Chandrasekar, B. (2007). Wnt-induced secreted protein-1 is a prohypertrophic and profibrotic growth factor. American Journal of Physiology: Heart and Circulatory Physiology, 293(3), H1839-H1846.
      Cui, S., Xue, L., Yang, F., Dai, S., Han, Z., Liu, K., & Chen, Y. (2018). Postinfarction hearts are protected by premature senescent cardiomyocytes via GATA 4-dependent CCN 1secretion. American Heart Association, 7(18), e009111.
      Desnoyers, L. (2004). Structural basis and therapeutic implication of the interaction of CCN proteins with glycoconjugates. Current Pharmaceutical Design, 10(31), 3913-3928.
      de Winter, P., Leoni, P., & Abraham, D. (2008). Connective tissue growth factor: Structure- function relationships of a mosaic, multifunctional protein. Growth Factors, 26(2), 80-91.
      Desnoyers, L., Arnott, D., & Pennica, D. (2001). WISP-1 binds to decorin and biglycan. Journal of Biological Chemistry, 276(50), 47599-47607.
      Du, H., Zhou, Y., Suo, Y., Liang, X., Chai, B., Duan, R., Huang, X., & Li, Q. (2018). CCN1 accelerates re-epithelialization by promoting keratinocyte migration and proliferation during cutaneous wound healing. Biochemical and Biophysical Research Communications, 505(4), 966-972.
      Frangogiannis, N. G. (2015). Inflammation in cardiac injury, repair and regeneration. Current Opinion in Cardiology, 30, 240-245.
      Friedman, S. L. (2010). Evolving challenges in hepatic fibrosis. Nature Reviews Gastroenterology & Hepatology, 7(8), 425-436.
      Gao, R., & Brigstock, D. R. (2003). Low density lipoprotein receptor-related protein (LRP) is a heparin-dependent adhesion receptor for connective tissue growth factor (CTGF) in rat activated hepatic stellate cells. Hepatology Research, 27, 214-220.
      Grazioli, S., Gil, S., An, D., Kajikawa, O., Farnand, A. W., Hanson, J. F., Birkland, T., Chen, P., Duffield, J., Schnapp, L. M., Altemeier, W. A., & Matute-Bello, G. (2015). CYR61 (CCN1) overexpression induces lung injury in mice. American Journal of Physiology: Lung Cellular and Molecular Physiology, 308(8), L759-L765.
      Grote, K., Salguero, G., Ballmaier, M., Dangers, M., Drexler, H., & Schieffer, B. (2007). The angiogenic factor CCN1 promotes adhesion and migration of circulating CD34+ progenitor cells: Potential role in angiogenesis and endothelial regeneration. Blood, 110(3), 877-885.
      Haldar, D., Henderson, N. C., Hirschfield, G., & Newsome, P. N. (2016). Mesenchymal stromal cells and liver fibrosis: A complicated relationship. Federation of American Societies for Experimental Biology Journal, 30(12), 3905-3928.
      Heise, R. L., Stober, V., Cheluvaraju, C., Hollingsworth, J. W., & Garantziotis, S. (2011). Mechanical stretch induces epithelial-mesenchymal transition in alveolar epithelia via hyaluronan activation of innate immunity. Journal of Biological Chemistry, 286(20), 17435-17444.
      Henrot, P., Truchetet, M. E., Fisher, G., Taïeb, A., & Cario, M. (2019). CCN proteins as potential actionable targets in scleroderma. Experimental Dermatology, 28(1), 11-18.
      Hilfiker-Kleiner, D., Kaminski, K., Kaminska, A., Fuchs, M., Klein, G., Podewski, E., Grote, K., Kiian, I., Wollert, K. C., Hilfiker, A., & Drexler, H. (2004). Regulation of proangiogenic factor CCN1 in cardiac muscle: Impact of ischemia, pressure overload, and neurohumoral activation. Circulation, 109(18), 2227-2233.
      Holbourn, K. P., Acharya, K. R., & Perbal, B. (2008). The CCN family of proteins: Structure-function relationships. Trends in Biochemical Sciences, 33, 461-473.
      Huang, A., Li, H., Zeng, C., Chen, W., Wei, L., Liu, Y., & Qi, X. (2020). Endogenous CCN5 participates in angiotensin II/TGF-beta1 networking of cardiac fibrosis in high angiotensin II-induced hypertensive heart failure. Frontiers in Pharmacology, 11, 1235.
      Ikawa, Y., Ng, P. S., Endo, K., Kondo, M., Chujo, S., Ishida, W., Shirasaki, F., Fujimoto, M., & Takehara, K. (2008). Neutralizing monoclonal antibody to human connective tissue growth factor ameliorates transforming growth factor-beta-induced mouse fibrosis. Journal of Cellular Physiology, 216(3), 680-687.
      Jeong, D., Lee, M. A., Li, Y., Yang, D. K., Kho, C., Oh, J. G., Hong, G., Lee, A., Song, M. H., LaRocca, T. J., Chen, J., Liang, L., Mitsuyama, S., D'Escamard, V., Kovacic, J. C., Kwak, T. H., Hajjar, R. J., & Park, W. J. (2016). Matricellular protein CCN5 reverses established cardiac fibrosis. Journal of the American College of Cardiology, 67(13), 1556-1568.
      Jian, Y., Wang, J., Dong, S., Hu, J., Hu, L., Yang, G., Zheng, Y., & Xiong, W. (2014). Wnt-induced secreted protein 1/CCN4 in liver fibrosis both in vitro and in vivo. Clinica y Laboratorio, 60(1), 29-35.
      Joliot, V., Martinerie, C., Dambrine, G., Plassiart, G., Brisac, M., Crochet, J., & Perbal, B. (1992). Proviral rearrangements and overexpression of a new cellular gene (nov) in myeloblastosis-associated virus type 1-induced nephroblastomas. Molecular and Cellular Biology, 12, 10-21.
      Jun, J. I., Kim, K. H., & Lau, L. F. (2015). The matricellular protein CCN1 mediates neutrophil efferocytosis in cutaneous wound healing. Nature Communications, 6, 7386.
      Jun, J. I., & Lau, L. F. (2010). The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nature Cell Biology, 12(7), 676-685.
      Kang, C., Xu, Q., Martin, T. D., Li, M. Z., Demaria, M., Aron, L., Lu, T., Yankner, B. A., Campisi, J., & Elledge, S. J. (2015). The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science, 349(6255), aaa5612-aaa5638.
      Katsube, K., Sakamoto, K., Tamamura, Y., & Yamaguchi, A. (2009). Role of CCN, a vertebrate specific gene family, in development. Development Growth and Differentiation, 51, 55-67.
      Kawara, S., Inagaki, Y., Kinbara, T., Inaoki, M., Takigawa, M., & Takehara, K. (2005). Connective tissue growth factor causes persistent proalpha2(I) collagen gene expression induced by transforming growth factor-beta in a mouse fibrosismodel. Journal of Cellular Physiology, 203(2), 447-456.
      Kim, K. H., Chen, C. C., Alpini, G., & Lau, L. F. (2015). CCN1 induces hepatic ductular reaction through integrin alphavbeta(5)-mediated activation of NF-kappaB. Journal of Clinical Investigation, 125(5), 1886-1900.
      Kim, K. H., Chen, C. C., Monzon, R. I., & Lau, L. F. (2013). Matricellular protein CCN1 promotes regression of liver fibrosis through induction of cellular senescence in hepatic myofibroblasts. Molecular and Cellular Biology, 33(10), 2078-2090.
      Kim, K. H., Chen, C. C., Monzon, R. I., & Lau, L. F. (2018). A functional characteristic of cysteine-rich protein 61: Modulation of myeloid-derived suppressor cells in liver inflammation. Hepatology, 67(1), 232-246.
      Kim, J., Joo, S., Eom, G. H., Lee, S. H., Lee, M. A., Lee, M., Kim, K. W., Kim, D. H., Kook, H., Kwak, T. H., & Park, W. J. (2018). CCN5 knockout mice exhibit lipotoxic cardiomyopathy with mild obesity and diabetes. PLOS One, 13(11), e0207228.
      Klee, S., Lehmann, M., Wagner, D. E., Baarsma, H. A., & Königshoff, M. (2016). WISP1 mediates IL-6-dependent proliferation in primary human lung fibroblasts. Scientific Reports, 6, 20547.
      Klinkhammer, B. M., Floege, J., & Boor, P. (2018). PDGF in organ fibrosis. Molecular Aspects of Medicine, 62, 44-62.
      Königshoff, M., Kramer, M., Balsara, N., Wilhelm, J., Amarie, O. V., Jahn, A., Rose, F., Fink, L., Seeger, W., Schaefer, L., Günther, A., & Eickelberg, O. (2009). WNT1-inducible signaling protein-1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. Journal of Clinical Investigation, 119(4), 772-7787.
      Krizhanovsky, V., Yon, M., Dickins, R. A., Hearn, S., Simon, J., Miething, C., Yee, H., Zender, L., & Lowe, S. W. (2008). Senescence of activated stellate cells limits liver fibrosis. Cell, 134, 657-667.
      Kulkarni, T., Kurundkar, A. R., Kim, Y. I., de Andrade, J., Luckhardt, T., & Thannickal, V. J. (2019). The senescence-associated matricellular protein CCN1 in plasma of human subjects with idiopathic pulmonary fibrosis. Respiratory Medicine, 161, 105821.
      Kurundkar, A. R., Kurundkar, D., Rangarajan, S., Locy, M. L., Zhou, Y., Liu, R. M., Zmijewski, J., & Thannickal, V. J. (2016). The matricellular protein CCN1 enhances TGF-β1/SMAD3- dependent profibrotic signaling in fibroblasts and contributes to fibrogenic responses to lung injury. Federation of American Societies for Experimental Biology Journal, 30(6), 2135-2150.
      Lau, L. F. (2011). CCN1/CYR61: The very model of a modern matricellular protein. Cellular and Molecular Life Science, 68(19), 3149-3163.
      Lau, L. F. (2016). Cell surface receptors for CCN proteins. Journal of Cell Communication and Signaling, 10(2), 121-127.
      Leask, A. (2015). Yin and Yang revisited: CCN3 as an anti-fibrotic therapeutic? Journal of Cell Communication and Signaling, 9(1), 97-98.
      Leask, A. (2019). Breathe, breathe in the air: The anti-CCN2 antibody pamrevlumab (FG-3019) completes a successful phase II clinical trial for idiopathic pulmonary fibrosis. Journal of Cell Communication and Signaling, 13(4), 441-442.
      Leask, A. (2020). Conjunction junction, what's the function? CCN proteins as targets in fibrosis and cancers. American Journal of Physiology: Cell Physiology, 318(6), C1046-C1054.
      Leask, A., & Abraham, D. J. (2006). All in the CCN family: Essential matricellular signaling modulators emerge from the bunker. Journal of Cell Science, 119, 4803-4810.
      Lee, S. H., Seo, G. S., Park, Y. N., & Sohn, D. H. (2004). Nephroblastoma overexpressed gene (NOV) expression in rat hepatic stellate cells. Biochemical Pharmacology, 68(7), 1391-1400.
      Lemaire, R., Farina, G., Bayle, J., Dimarzio, M., Pendergrass, S. A., Milano, A., Whitfield, M. L., & Lafyatis, R. (2010). Antagonistic effect of the matricellular signaling protein CCN3 on TGF-beta- and Wnt-mediated fibrillinogenesis in systemic sclerosis and Marfan syndrome. Journal of Investigative Dermatology, 130(6), 1514-1523.
      Lenti, M. V., & Di Sabatino, A. (2019). Intestinal fibrosis. Molecular Aspects of Medicine, 65, 100-109.
      Li, X., Chen, Y., Ye, W., Tao, X., Zhu, J., Wu, S., & Lou, L. (2015). Blockade of CCN4 attenuates CCl4-induced liver fibrosis. Archives of Medical Science, 11(3), 647-653.
      Li, H. H., Li, Q., Liu, P., Liu, Y., Li, J., Wasserloos, K., Chao, W., You, M., Oury, T. D., Chhinder, S., Hackam, D. J., Billiar, T. R., Leikauf, G. D., Pitt, B. R., & Zhang, L. M. (2012). WNT1-inducible signaling pathway protein 1 contributes to ventilator-induced lung injury. American Journal of Respiratory Cell and Molecular Biology, 47(4), 528-535.
      Liu, H. F., Liu, H., Lv, L. L., Ma, K. L., Wen, Y., Chen, L., & Liu, B. C. (2018). CCN3 suppresses TGF-β1-induced extracellular matrix accumulation in human mesangial cells in vitro. Acta Pharmacologica Sinica, 39(2), 222-229.
      Li, Z. Q., Wu, W. R., Zhao, C., Zhao, C., Zhang, X. L., Yang, Z., & Si, W. K. (2018). CCN1/Cyr61 enhances the function of hepatic stellate cells in promoting the progression of hepatocellular carcinoma. International Journal of Molecular Medicine, 41(3), 1518-1528.
      Madne, T. H., & Dockrell, M. E. C. (2018). CCN3, a key matricellular protein, distinctly inhibits TGFβ1-mediated Smad1/5/8 signalling in human podocyte culture. Cellular and Molecular Biology, 64(3), 5-10.
      Marchal, P. O., Kavvadas, P., Abed, A., Kazazian, C., Authier, F., Koseki, H., Hiraoka, S., Boffa, J. J., Martinerie, C., & Chadjichristos, C. E. (2015). Reduced NOV/CCN3 expression limits inflammation and interstitial renal fibrosis after obstructive nephropathy in mice. PLOS One, 10(9), e0137876.
      Meyer, K., Hodwin, B., Ramanujam, D., Engelhardt, S., & Sarikas, A. (2016). Essential role for premature senescence of myofibroblasts in myocardial fibrosis. Journal of the American College of Cardiology, 67(17), 2018-2028.
      Murphy-Marshman, H., Quensel, K., Shi-Wen, X., Barnfield, R., Kelly, J., Peidl, A., & Leask, A. (2017). Antioxidants and NOX1/NOX4 inhibition blocks TGFβ1-induced CCN2 and α-SMA expression in dermal and gingival fibroblasts. PLOS One, 12(10), e0186740.
      Murphy-Ullrich, J. E., & Sage, E. H. (2014). Revisiting the matricellular concept. Matrix Biology, 37, 1-14.
      Nishida, T., Kubota, S., Aoyama, E., Janune, D., Maeda, A., & Takigawa, M. (2011). Effect of CCN2 on FGF2-induced proliferation and MMP9 and MMP13 productions by chondrocytes. Endocrinology, 152(11), 4232-4241.
      O'Brien, T. P., Yang, G. P., Sanders, L., & Lau, L. F. (1990). Expression of cyr61, a growth factor -inducible immediate-early gene. Molecular and Cellular Biology, 10(7), 3569-3577.
      Ono, M., Masaki, A., Maeda, A., Kilts, T. M., Hara, E. S., Komori, T., Pham, H., Kuboki, T., & Young, M. F. (2018). CCN4/WISP1 controls cutaneous wound healing by modulating proliferation, migration and ECM expression in dermal fibroblasts via α5β1 and TNFα. Matrix Biology, 68-69, 533-546.
      Pakshir, P., & Hinz, B. (2018). The big five in fibrosis: Macrophages, myofibroblasts, matrix, mechanics, and miscommunication. Matrix Biology, 68-69, 81-93.
      Pandit, K. V., Milosevic, J., & Kaminski, N. (2011). MicroRNAs in idiopathic pulmonary fibrosis. Translational Research: The Journal of Laboratory & Clinical Medicine, 157, 191-199.
      Papetta, A., Gakiopoulou, H., Agapitos, E., Patsouris, E. S., & Lazaris, A. C. (2013). Correlations between CCN1 immunoexpression and myocardial histologic lesions in sudden cardiac death. American Journal of Forensic Medicine and Pathology, 34, 169-176.
      Parola, M., & Pinzani, M. (2019). Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Molecular Aspects of Medicine, 65, 37-55.
      Peidl, A., Perbal, B., & Leask, A. (2019). Yin/Yang expression of CCN family members: Transforming growth factor beta 1, viaALK5/FAK/MEK, induces CCN1 and CCN2, yet suppresses CCN3, expression in human dermal fibroblasts. PLOS One, 14(6), e0218178.
      Pennica, D., Swanson, T. A., Welsh, J. W., Roy, M. A., Lawrence, D. A., Lee, J., Brush, J., Taneyhill, L. A., Deuel, B., Lew, M., Watanabe, C., Cohen, R. L., Melhem, M. F., Finley, G. G., Quirke, P., Goddard, A. D., Hillan, K. J., Gurney, A. L., Botstein, D., & Levine, A. J. (1998). WISP genes are members of the connective tissue growth factor family that are up-regulated in wnt-1-transformed cells and aberrantly expressed in human colon tumors. Proceedings of the National Academy of Sciences of the United States of America, 95(25), 14717-14722.
      Perbal, B. (2013). CCN proteins: A centralized communication network. Journal of Cell Communication and Signaling, 7(3), 169-177.
      Perbal, B. (2019). CCN proteins are part of a multilayer complex system: A working model. Journal of Cell Communication and Signaling, 13(4), 437-439.
      Piszczatowski, R. T., & Lents, N. H. (2016). Regulation of the CCN genes by vitamin D: A possible adjuvant therapy in the treatment of cancer and fibrosis. Cellular Signalling, 28(10), 1604-1613.
      Polo, M., Ko, F., Busillo, F., Cruse, C. W., Krizek, T. J., & Robson, M. C. (1997). The 1997 Moyer award. cytokine production in patients with hypertrophic burn scars. The Journal of Burn Care & Rehabilitation, 18, 477-482.
      Raissadati, A., Nykänen, A. I., Tuuminen, R., Syrjälä, S. O., Krebs, R., Arnaudova, R., Rouvinen, E., Wang, X., Poller, W., & Lemström, K. B. (2015). Systemic overexpression of matricellular protein CCN1 exacerbates obliterative bronchiolitis in mouse tracheal allografts. Transplant International, 28(12), 1416-1425.
      Ramazani, Y., Knops, N., Elmonem, M. A., Nguyen, T. Q., Arcolino, F. O., van den Heuvel, L., Levtchenko, E., Kuypers, D., & Goldschmeding, R. (2018). Connective tissue growth factor (CTGF) from basics to clinics. Matrix Biology, 68-69, 44-66.
      Rashid, S. T., Humphries, J. D., Byron, A., Dhar, A., Askari, J. A., Selley, J. N., Knight, D., Goldin, R. D., Thursz, M., & Humphries, M. J. (2012). Proteomic analysis of extracellular matrix from the hepatic stellate cell line LX-2 identifies CYR61 and Wnt-5a as novel constituents of fibrotic liver. Journal of Proteome Research, 11(8), 4052-4064.
      Ren, Z., Hou, Y., Ma, S., Tao, Y., Li, J., Cao, H., & Ji, L. (2014). Effects of CCN3 on fibroblast proliferation, apoptosis and extracellular matrix production. International Journal of Molecular Medicine, 33(6), 1607-1612.
      Richeldi, L., Fernández Pérez, E. R., Costabel, U., Albera, C., Lederer, D. J., Flaherty, K. R., Ettinger, N., Perez, R., Scholand, M. B., Goldin, J., Peony Yu, K. H., Neff, T., Porter, S., Zhong, M., Gorina, E., Kouchakji, E., & Raghu, G. (2020). Pamrevlumab, an anti-connective tissue growth factor therapy, for idiopathic pulmonary fibrosis (PRAISE): A phase 2, randomised, doubleblind, placebo-controlled trial. The Lancet Respiratory Medicine, 8, 25-33.
      Riser, B. L., Najmabadi, F., Garchow, K., Barnes, J. L., Peterson, D. R., & Sukowski, E. J. (2014). Treatment with the matricellular protein CCN3 blocks and/or reverses fibrosis development in obesity with diabetic nephropathy. American Journal of Pathology, 184(11), 2908-2921.
      Riser, B. L., Najmabadi, F., Perbal, B., Peterson, D. R., Rambow, J. A., Riser, M. L., Sukowski, E., Yeger, H., & Riser, S. C. (2009). CCN3 (NOV) is a negative regulator of CCN2 (CTGF) and a novel endogenous inhibitor of the fibrotic pathway in an in vitro model of renal disease. American Journal of Pathology, 174(5), 1725-1734.
      Riser, B. L., Najmabadi, F., Perbal, B., Rambow, J. A., Riser, M. L., Sukowski, E., Yeger, H., Riser, S. C., & Peterson, D. R. (2010). CCN3/CCN2 regulation and the fibrosis of diabetic renal disease. Journal of Cell Communication and Signaling, 4(1), 39-50.
      Sakamotomoto, K., Yamaguchi, S., Ando, R., Miyawaki, A., Kabasawa, Y., Takagi, M., Li, C. L., Perbal, B., & Katsube, K. (2002). The nephroblastoma overexpressed gene (NOV/ccn3) protein associates with Notch1 extracellular domain and inhibits myoblast differentiation via Notch signaling pathway. Journal of Biological Chemistry, 277(33), 29399-29405.
      Scotton, C. J., Krupiczojc, M. A., Königshoff, M., Mercer, P. F., Lee, Y. C. G., Kaminski, N., Morser, J., Post, J. M., Maher, T. M., Nicholson, A. G., Moffatt, J. D., Laurent, G. J., Derian, C. K., Eickelberg, O., & Chambers, R. C. (2009). Increased local expression of coagulation factor X contributes to the fibrotic response in human and murine lung injury. Journal of Clinical Investigation, 119(9), 2550-2563.
      Sharma, S., Tantisira, K., Carey, V., Murphy, A. J., Lasky-Su, J., Celedón, J. C., Lazarus, R., Klanderman, B., Rogers, A., Soto-Quirós, M., Avila, L., Mariani, T., Gaedigk, R., Leeder, S., Torday, J., Warburton, D., Raby, B., & Weiss, S. T. (2010). A role for Wnt signaling genes in the pathogenesis of impaired lung function in asthma. American Journal of Respiratory and Critical Care Medicine, 181(4), 328-336.
      Sziksz, E., Pap, D., Lippai, R., Béres, N. J., Fekete, A., Szabó, A. J., & Vannay, Á. (2015). Fibrosis related inflammatory mediators: Role of the IL-10 cytokine family. Mediators of Inflammation, 2015, 764641-15.
      Tang, H., Mao, J., Ye, X., Zhang, F., Kerr, W. G., Zheng, T., & Zhu, Z. (2020). SHIP-1, a target of miR-155, regulates endothelial cell responses in lung fibrosis. FASEB Journal, 34(2), 2011-2023.
      Urban, M. L., Manenti, L., & Vaglio, A. (2015). Fibrosis-A common pathway to organ injury and failure. New England Journal of Medicine, 373(1), 95-96.
      van Roeyen, C. R. C., Boor, P., Borkham-Kamphorst, E., Rong, S., Kunter, U., Martin, I. V., Kaitovic, A., Fleckenstein, S., Perbal, B., Trautwein, C., Weiskirchen, R., Ostendorf, T., & Floege, J. (2012). A novel, dual role of CCN3 in experimental glomerulonephritis: Pro-angiogenic and antimesangioproliferative effects. American Journal of Pathology, 180(5), 1979-1990.
      Venkatachalam, K., Venkatesan, B., Valente, A. J., Melby, P. C., Nandish, S., Reusch, J. E. B., Clark, R. A., & Chandrasekar, B. (2009). WISP1, a pro-mitogenic, pro-survival factor, mediates tumor necrosis factor-alpha (TNF-alpha)-stimulated cardiac fibroblast proliferation but inhibits TNF-alpha-induced cardiomyocyte death. Journal of Biological Chemistry, 284(21), 14414-14427.
      Weiskirchen, R., Weiskirchen, S., & Tacke, F. (2019). Organ and tissue fibrosis: Molecular signals, cellular mechanisms and translational implications. Molecular Aspects of Medicine, 65, 2-15.
      Wu, W., Hu, X., Zhou, X., Klenotic, P. A., Zhou, Q., & Lin, Z. (2018). Myeloid deficiency of CCN3 exacerbates liver injury in a mouse model of nonalcoholic fatty liver disease. Journal of Cell Communication and Signaling, 2(1), 389-399.
      Wynn, T. A. (2008). Cellular and molecular mechanisms of fibrosis. Journal of Pathology, 214(2), 199-210.
      Wynn, T. A. (2011). Integrating mechanisms of pulmonary fibrosis. Journal of Experimetnal Medicine, 208(7), 1339-1350.
      Xiao, X., Yuan, Q., Chen, Y., Huang, Z., Fang, X., Zhang, H., Peng, L., & Xiao, P. (2019). LncRNA ENST00000453774.1 contributes to oxidative stress defense dependent on autophagy mediation to reduce extracellular matrix and alleviate renal fibrosis. Journal of Cellular Physiology, 234(6), 9130-9143.
      Xu, H., Li, P., Liu, M., Liu, C., Sun, Z., Guo, X., & Zhang, Y. (2015). CCN2 and CCN5 exerts opposing effect on fibroblast proliferation and transdifferentiation induced by TGF-beta. Clinical and Experimental Pharmacology and Physiology, 42(11), 1207-1219.
      Xu, H., Liu, C., Sun, Z., Guo, X., Zhang, Y., Liu, M., & Li, P. (2015). CCN5 attenuates profibrotic phenotypes of fibroblasts through the Smad6-CCN2 pathway: Potential role in epidural fibrosis. International Journal of Molecular Medicine, 36(1), 123-129.
      Yajima, R., Takano, K., Konno, T., Kohno, T., Kaneko, Y., Kakuki, T., Nomura, K., Kakiuchi, A., Himi, T., & Kojima, T. (2018). Mechanism of fibrogenesis in submandibular glands in patients with IgG4-RD. Journal of Molecular Histology, 49(6), 577-587.
      Yang, M., Du, Y., Xu, Z., & Jiang, Y. (2016). Functional effects of WNT1-inducible signaling pathway protein-1 on bronchial smooth muscle cell migration and proliferation in OVA-induced airway remodeling. Inflammation, 39(1), 16-29.
      Ye, S., Kwon, W. K., Bae, T., Kim, S., Lee, J. B., Cho, T. H., Park, J. Y., Kim, K., Hur, J. K., & Hur, J. W. (2019). CCN5 reduces ligamentum flavum hypertrophy by modulating the TGF-β pathway. Journal of Orthopaedic Research, 37(12), 2634-2644.
      Yeger, H., & Perbal, B. (2016). CCN family of proteins: Critical modulators of the tumor cell microenvironment. Journal of Cell Communication and Signaling, 10(3), 229-240.
      Yin, Q., & Liu, H. (2019). Connective tissue growth factor and renal fibrosis. Advances in Experimental Medicine and Biology, 1165, 365-380.
      Yoon, A., Im, S., Lee, J., Park, D., Jo, D. H., Kim, J. H., Kim, J. H., & Park, W. J. (2018). The matricellular protein CCN5 inhibits fibrotic deformation of retinal pigment epithelium. PLOS One, 13(12), e0208897.
      Yoon, P. O., Lee, M. A., Cha, H., Jeong, M. H., Kim, J., Jang, S. P., Choi, B. Y., Jeong, D., Yang, D. K., Hajjar, R. J., & Park, W. J. (2010). The opposing effects of CCN2 and CCN5 on the development of cardiac hypertrophy and fibrosis. Journal of Molecular and Cellular Cardiology, 49(2), 294-303.
      Yoshida, Y., Togi, K., Matsumae, H., Nakashima, Y., Kojima, Y., Yamamoto, H., Ono, K., Nakamura, T., Kita, T., & Tanaka, M. (2007). CCN1 protects cardiac myocytes from oxidative stress via beta1 integrin-Akt pathway. Biochemical and Biophysical Research Communications, 355(3), 611-618.
      Zhang, L., Li, Y., Liang, C., & Yang, W. (2014). CCN5 overexpression inhibits profibrotic phenotypes via the PI3K/Akt signaling pathway in lung fibroblasts isolated from patients with idiopathic pulmonaryfibrosis and in an in vivo model of lung fibrosis. International Journal of Molecular Medicine, 33(2), 478-486.
      Zhao, J., Zhang, C., Liu, J., Zhang, L., Cao, Y., Wu, D., Yao, F., Xue, R., Huang, H., Jiang, J., Dong, B., Sun, Y., Bai, Y., Dong, Y., & Liu, C. (2018). Prognostic significance of serum cysteine-rich protein 61 in patients with acute heart failure. Cellular Physiology and Biochemistry, 48(3), 1177-1187.
      Zuo, G. W., Kohls, C. D., He, B. C., Chen, L., Zhang, W., Shi, Q., & Luo, Q. (2010). The CCN proteins: Important signaling mediators in stem cell differentiation and tumorigenesis. Histology and Histopathology, 25(6), 795-806.
    • Contributed Indexing:
      Keywords: CCN protein; TGF-β; extracellular matrix; fibrosis; myofibroblasts
    • Accession Number:
      0 (CCN Intercellular Signaling Proteins)
    • Publication Date:
      Date Created: 20201122 Date Completed: 20211004 Latest Revision: 20211004
    • Publication Date:
      20240829
    • Accession Number:
      10.1002/jcp.30171
    • Accession Number:
      33222181