Correlation between single-nucleotide polymorphisms and statin-induced myopathy: a mixed-effects model meta-analysis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Germany NLM ID: 1256165 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1041 (Electronic) Linking ISSN: 00316970 NLM ISO Abbreviation: Eur J Clin Pharmacol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Berlin, New York, Springer.
    • Subject Terms:
    • Abstract:
      Purpose: A meta-analysis was performed to evaluate the correlation between single-nucleotide polymorphisms (SNPs) and risk of statin-induced myopathy (SIM).
      Methods: We retrieved the studies published on SIM until April 2019 from the PubMed, Embase, and Cochrane Library databases. We collected data from 32 studies that analyzed 10 SNPs in five genes and included 21,692 individuals and nine statins.
      Results: The analysis of the heterozygous (p = 0.017), homozygous (p = 0.002), dominant (p = 0.005), and recessive models (p = 0.009) of SLCO1B1 rs4149056 showed that this SNP increases the risk of SIM. Conversely, heterozygous (p = 0.048) and dominant models (p = 0.030) of SLCO1B1 rs4363657 demonstrated that this SNP is associated with a reduced risk of SIM. Moreover, an increased risk of SIM was predicted for carriers of the rs4149056 C allele among simvastatin-treated patients, whereas carriers of the GATM rs9806699 A allele among rosuvastatin-treated patients had a lower risk of SIM.
      Conclusion: The meta-analysis revealed that the rs4149056 and rs4363657 SNPs in SLCO1B1 and the rs9806699 SNP in GATM are correlated with the risk of SIM.
    • References:
      Savarese G, Gotto AM, Jr., Paolillo S, D’Amore C, Losco T, Musella F, Scala O, Marciano C, Ruggiero D, Marsico F, De Luca G, Trimarco B, Perrone-Filardi P (2013) Benefits of statins in elderly subjects without established cardiovascular disease: a meta-analysis. Journal of the American College of Cardiology 62 (22):2090-2099. doi: https://doi.org/10.1016/j.jacc.2013.07.069.
      Vrablik M, Zlatohlavek L, Stulc T, Adamkova V, Prusikova M, Schwarzova L, Hubacek JA, Ceska R (2014) Statin-associated myopathy: from genetic predisposition to clinical management. Physiol Res 63(Suppl 3):S327–S334. (PMID: 10.33549/physiolres.932865)
      Stalenhoef A (2015) Coenzyme Q10 and statin-related myopathy. Drug Ther Bull 53(5):54–56. https://doi.org/10.1136/dtb.2015.5.0325. (PMID: 10.1136/dtb.2015.5.0325)
      Stroes ES, Thompson PD, Corsini A, Vladutiu GD, Raal FJ, Ray KK, Roden M, Stein E, Tokgozoglu L, Nordestgaard BG, Bruckert E, De Backer G, Krauss RM, Laufs U, Santos RD, Hegele RA, Hovingh GK, Leiter LA, Mach F, Marz W, Newman CB, Wiklund O, Jacobson TA, Catapano AL, Chapman MJ, Ginsberg HN, European Atherosclerosis Society Consensus P (2015) Statin-associated muscle symptoms: impact on statin therapy-European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management. European heart journal 36 (17):1012-1022. doi: https://doi.org/10.1093/eurheartj/ehv043.
      Needham M, Mastaglia FL (2014) Statin myotoxicity: a review of genetic susceptibility factors. Neuromuscul Disord 24(1):4–15. https://doi.org/10.1016/j.nmd.2013.09.011. (PMID: 10.1016/j.nmd.2013.09.01124176465)
      Xiang Q, Chen SQ, Ma LY, Hu K, Zhang Z, Mu GY, Xie QF, Zhang XD, Cui YM (2018) Association between SLCO1B1 T521C polymorphism and risk of statin-induced myopathy: a meta-analysis. Pharmacogenomics J 18(6):721–729. https://doi.org/10.1038/s41397-018-0054-0. (PMID: 10.1038/s41397-018-0054-030250148)
      Hou Q, Li S, Li L, Li Y, Sun X, Tian H (2015) Association between SLCO1B1 gene T521C polymorphism and statin-related myopathy risk: a meta-analysis of case-control studies. Medicine 94(37):e1268. https://doi.org/10.1097/MD.0000000000001268. (PMID: 10.1097/MD.0000000000001268263763744635788)
      Canestaro WJ, Austin MA, Thummel KE (2014) Genetic factors affecting statin concentrations and subsequent myopathy: a HuGENet systematic review. Genet Med 16(11):810–819. https://doi.org/10.1038/gim.2014.41. (PMID: 10.1038/gim.2014.41248106854676271)
      Su J, Xu H, Yang J, Yu Q, Yang S, Zhang J, Yao Q, Zhu Y, Luo Y, Ji L, Zheng Y, Yu J (2015) ABCB1 C3435T polymorphism and the lipid-lowering response in hypercholesterolemic patients on statins: a meta-analysis. Lipids Health Dis 14:122. https://doi.org/10.1186/s12944-015-0114-2. (PMID: 10.1186/s12944-015-0114-2264380794594898)
      Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. Jama 283(15):2008–2012. https://doi.org/10.1001/jama.283.15.2008. (PMID: 10.1001/jama.283.15.200810789670)
      Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603–605. https://doi.org/10.1007/s10654-010-9491-z. (PMID: 10.1007/s10654-010-9491-z20652370)
      Chen J, Chatterjee N (2007) Exploiting Hardy-Weinberg equilibrium for efficient screening of single SNP associations from case-control studies. Hum Hered 63(3-4):196–204. https://doi.org/10.1159/000099996. (PMID: 10.1159/0000999961731796817317968)
      Areeshi MY, Mandal RK, Panda AK, Bisht SC, Haque S (2013) CD14 -159 C>T gene polymorphism with increased risk of tuberculosis: evidence from a meta-analysis. PloS one 8(5):e64747. https://doi.org/10.1371/journal.pone.0064747. (PMID: 10.1371/journal.pone.0064747237413833669331)
      Bai X, Zhang B, Wang P, Wang GL, Li JL, Wen DS, Long XZ, Sun HS, Liu YB, Huang M, Zhong SL (2019) Effects of SLCO1B1 and GATM gene variants on rosuvastatin-induced myopathy are unrelated to high plasma exposure of rosuvastatin and its metabolites. Acta Pharmacol Sin 40(4):492–499. https://doi.org/10.1038/s41401-018-0013-y. (PMID: 10.1038/s41401-018-0013-y29950617)
      Bakar NS, Neely D, Avery P, Brown C, Daly AK, Kamali F (2018) Genetic and clinical factors are associated with statin-related myotoxicity of moderate severity: a case-control study. Clinical pharmacology and therapeutics 104(1):178–187. https://doi.org/10.1002/cpt.887. (PMID: 10.1002/cpt.88728940218)
      Alghalyini B, El Shamieh S, Salami A, Visvikis Siest S, Fakhoury HM, Fakhoury R (2018) Effect of SLCO1B1 gene polymorphisms and vitamin D on statin-induced myopathy. Drug Metab Pers Ther 33(1):41–47. https://doi.org/10.1515/dmpt-2017-0030. (PMID: 10.1515/dmpt-2017-003029420305)
      KS M, Maroteau C, Veluchamy A, Tornio A, Tavendale R, Carr F, Abelega NU, Carr D, Bloch K, Hallberg P, Yue QY, Pearson ER, Colhoun HM, Morris AD, Dow E, George J, Pirmohamed M, Ridker PM, ASF D, Alfirevic A, Wadelius M, Maitland-van der Zee AH, Chasman DI, CNA P, Consortium P-A (2017) A common missense variant of LILRB5 is associated with statin intolerance and myalgia. European heart journal 38(48):3569–3575. https://doi.org/10.1093/eurheartj/ehx467. (PMID: 10.1093/eurheartj/ehx467)
      Liu JE, Liu XY, Chen S, Zhang Y, Cai LY, Yang M, Lai WH, Ren B, Zhong SL (2017) SLCO1B1 521T > C polymorphism associated with rosuvastatin-induced myotoxicity in Chinese coronary artery disease patients: a nested case-control study. Eur J Clin Pharmacol 73(11):1409–1416. https://doi.org/10.1007/s00228-017-2318-z. (PMID: 10.1007/s00228-017-2318-z28812116)
      Hubacek JA, Adamkova V, Zlatohlavek L, Steiner-Mrazova L, Vrablik M (2017) COQ2 polymorphisms are not associated with increased risk of statin-induced myalgia/myopathy in the Czech population. Drug Metab Pers Ther 32(4):177–182. https://doi.org/10.1515/dmpt-2017-0027. (PMID: 10.1515/dmpt-2017-002729257754)
      Ovesjo ML, Skilving I, Bergman P, Rane A, Ekstrom L, Bjorkhem-Bergman L (2016) Low vitamin D levels and genetic polymorphism in the vitamin D receptor are associated with increased risk of statin-induced myopathy. Basic Clin Pharmacol Toxicol 118(3):214–218. https://doi.org/10.1111/bcpt.12482. (PMID: 10.1111/bcpt.1248226423691)
      Khine H, Yuet WC, Adams-Huet B, Ahmad Z (2016) Statin-associated muscle symptoms and SLCO1B1 rs4149056 genotype in patients with familial hypercholesterolemia. Am Heart J 179:1–9. https://doi.org/10.1016/j.ahj.2016.05.015. (PMID: 10.1016/j.ahj.2016.05.015275956745014387)
      Luzum JA, Kitzmiller JP, Isackson PJ, Ma C, Medina MW, Dauki AM, Mikulik EB, Ochs-Balcom HM, Vladutiu GD (2015) GATM polymorphism associated with the risk for statin-induced myopathy does not replicate in case-control analysis of 715 dyslipidemic individuals. Cell Metab 21(4):622–627. https://doi.org/10.1016/j.cmet.2015.03.003. (PMID: 10.1016/j.cmet.2015.03.003258632514394188)
      Hubacek JA, Dlouha D, Adamkova V, Zlatohlavek L, Viklicky O, Hruba P, Ceska R, Vrablik M (2015) SLCO1B1 polymorphism is not associated with risk of statin-induced myalgia/myopathy in a Czech population. Med Sci Monit 21:1454–1459. https://doi.org/10.12659/MSM.893007. (PMID: 10.12659/MSM.893007259928104450600)
      Mangravite LM, Engelhardt BE, Medina MW, Smith JD, Brown CD, Chasman DI, Mecham BH, Howie B, Shim H, Naidoo D, Feng Q, Rieder MJ, Chen YD, Rotter JI, Ridker PM, Hopewell JC, Parish S, Armitage J, Collins R, Wilke RA, Nickerson DA, Stephens M, Krauss RM (2013) A statin-dependent QTL for GATM expression is associated with statin-induced myopathy. Nature 502(7471):377–380. https://doi.org/10.1038/nature12508. (PMID: 10.1038/nature12508239956913933266)
      Carr DF, Alfirevic A, Johnson R, Chinoy H, van Staa T, Pirmohamed M (2014) GATM gene variants and statin myopathy risk. Nature 513(7518):E1. https://doi.org/10.1038/nature13628. (PMID: 10.1038/nature1362825230669)
      Floyd JS, Bis JC, Brody JA, Heckbert SR, Rice K, Psaty BM (2014) GATM locus does not replicate in rhabdomyolysis study. Nature 513(7518):E1–E3. https://doi.org/10.1038/nature13629. (PMID: 10.1038/nature13629252306684230441)
      Ferrari M, Guasti L, Maresca A, Mirabile M, Contini S, Grandi AM, Marino F, Cosentino M (2014) Association between statin-induced creatine kinase elevation and genetic polymorphisms in SLCO1B1, ABCB1 and ABCG2. Eur J Clin Pharmacol 70(5):539–547. https://doi.org/10.1007/s00228-014-1661-6. (PMID: 10.1007/s00228-014-1661-624595600)
      Danik JS, Chasman DI, MacFadyen JG, Nyberg F, Barratt BJ, Ridker PM (2013) Lack of association between SLCO1B1 polymorphisms and clinical myalgia following rosuvastatin therapy. Am Heart J 165(6):1008–1014. https://doi.org/10.1016/j.ahj.2013.01.025. (PMID: 10.1016/j.ahj.2013.01.02523708174)
      Carr DF, O’Meara H, Jorgensen AL, Campbell J, Hobbs M, McCann G, van Staa T, Pirmohamed M (2013) SLCO1B1 genetic variant associated with statin-induced myopathy: a proof-of-concept study using the clinical practice research datalink. Clinical pharmacology and therapeutics 94(6):695–701. https://doi.org/10.1038/clpt.2013.161. (PMID: 10.1038/clpt.2013.161239421383831180)
      Santos PC, Gagliardi AC, Miname MH, Chacra AP, Santos RD, Krieger JE, Pereira AC (2012) SLCO1B1 haplotypes are not associated with atorvastatin-induced myalgia in Brazilian patients with familial hypercholesterolemia. Eur J Clin Pharmacol 68(3):273–279. https://doi.org/10.1007/s00228-011-1125-1. (PMID: 10.1007/s00228-011-1125-121928084)
      Brunham LR, Lansberg PJ, Zhang L, Miao F, Carter C, Hovingh GK, Visscher H, Jukema JW, Stalenhoef AF, Ross CJ, Carleton BC, Kastelein JJ, Hayden MR (2012) Differential effect of the rs4149056 variant in SLCO1B1 on myopathy associated with simvastatin and atorvastatin. Pharmacogenomics J 12(3):233–237. https://doi.org/10.1038/tpj.2010.92. (PMID: 10.1038/tpj.2010.9221243006)
      Vladutiu GD, Isackson PJ, Kaufman K, Harley JB, Cobb B, Christopher-Stine L, Wortmann RL (2011) Genetic risk for malignant hyperthermia in non-anesthesia-induced myopathies. Mol Genet Metab 104(1-2):167–173. https://doi.org/10.1016/j.ymgme.2011.07.001. (PMID: 10.1016/j.ymgme.2011.07.001217950853171598)
      Marciante KD, Durda JP, Heckbert SR, Lumley T, Rice K, McKnight B, Totah RA, Tamraz B, Kroetz DL, Fukushima H, Kaspera R, Bis JC, Glazer NL, Li G, Austin TR, Taylor KD, Rotter JI, Jaquish CE, Kwok PY, Tracy RP, Psaty BM (2011) Cerivastatin, genetic variants, and the risk of rhabdomyolysis. Pharmacogenet Genomics 21(5):280–288. https://doi.org/10.1097/FPC.0b013e328343dd7d. (PMID: 10.1097/FPC.0b013e328343dd7d213867543076530)
      Isackson PJ, Ochs-Balcom HM, Ma C, Harley JB, Peltier W, Tarnopolsky M, Sripathi N, Wortmann RL, Simmons Z, Wilson JD, Smith SA, Barboi A, Fine E, Baer A, Baker S, Kaufman K, Cobb B, Kilpatrick JR, Vladutiu GD (2011) Association of common variants in the human eyes shut ortholog (EYS) with statin-induced myopathy: evidence for additional functions of EYS. Muscle & nerve 44(4):531–538. https://doi.org/10.1002/mus.22115. (PMID: 10.1002/mus.22115)
      Hoenig MR, Walker PJ, Gurnsey C, Beadle K, Johnson L (2011) The C3435T polymorphism in ABCB1 influences atorvastatin efficacy and muscle symptoms in a high-risk vascular cohort. J Clin Lipidol 5(2):91–96. https://doi.org/10.1016/j.jacl.2011.01.001. (PMID: 10.1016/j.jacl.2011.01.00121392722)
      Donnelly LA, Doney AS, Tavendale R, Lang CC, Pearson ER, Colhoun HM, McCarthy MI, Hattersley AT, Morris AD, Palmer CN (2011) Common nonsynonymous substitutions in SLCO1B1 predispose to statin intolerance in routinely treated individuals with type 2 diabetes: a go-DARTS study. Clinical pharmacology and therapeutics 89(2):210–216. https://doi.org/10.1038/clpt.2010.255. (PMID: 10.1038/clpt.2010.25521178985)
      Puccetti L, Ciani F, Auteri A (2010) Genetic involvement in statins induced myopathy. Preliminary data from an observational case-control study. Atherosclerosis 211(1):28–29. https://doi.org/10.1016/j.atherosclerosis.2010.02.026. (PMID: 10.1016/j.atherosclerosis.2010.02.02620347093)
      Linde R, Peng L, Desai M, Feldman D (2010) The role of vitamin D and SLCO1B1*5 gene polymorphism in statin-associated myalgias. Dermatoendocrinol 2(2):77–84. https://doi.org/10.4161/derm.2.2.13509. (PMID: 10.4161/derm.2.2.13509215471033081682)
      Search Collaborative Group, Link E, Parish S, Armitage J, Bowman L, Heath S, Matsuda F, Gut I, Lathrop M, Collins R (2008) SLCO1B1 variants and statin-induced myopathy--a genomewide study. The New England journal of medicine 359(8):789–799. https://doi.org/10.1056/NEJMoa0801936. (PMID: 10.1056/NEJMoa0801936)
      Zuccaro P, Mombelli G, Calabresi L, Baldassarre D, Palmi I, Sirtori CR (2007) Tolerability of statins is not linked to CYP450 polymorphisms, but reduced CYP2D6 metabolism improves cholesteraemic response to simvastatin and fluvastatin. Pharmacol Res 55(4):310–317. https://doi.org/10.1016/j.phrs.2006.12.009. (PMID: 10.1016/j.phrs.2006.12.00917289397)
      Oh J, Ban MR, Miskie BA, Pollex RL, Hegele RA (2007) Genetic determinants of statin intolerance. Lipids Health Dis 6:7. https://doi.org/10.1186/1476-511X-6-7. (PMID: 10.1186/1476-511X-6-7173762241832194)
      Frudakis TN, Thomas MJ, Ginjupalli SN, Handelin B, Gabriel R, Gomez HJ (2007) CYP2D6*4 polymorphism is associated with statin-induced muscle effects. Pharmacogenet Genomics 17(9):695–707. https://doi.org/10.1097/FPC.0b013e328012d0a9. (PMID: 10.1097/FPC.0b013e328012d0a917700359)
      Fisher NM, Meksawan K, Limprasertkul A, Isackson PJ, Pendergast DR, Vladutiu GD (2007) Statin therapy depresses total body fat oxidation in the absence of genetic limitations to fat oxidation. J Inherit Metab Dis 30(3):388–399. https://doi.org/10.1007/s10545-007-0449-6. (PMID: 10.1007/s10545-007-0449-617410478)
      Wilke RA, Moore JH, Burmester JK (2005) Relative impact of CYP3A genotype and concomitant medication on the severity of atorvastatin-induced muscle damage. Pharmacogenet Genomics 15(6):415–421. (PMID: 10.1097/01213011-200506000-00007)
      Fiegenbaum M, da Silveira FR, Van der Sand CR, Van der Sand LC, Ferreira ME, Pires RC, Hutz MH (2005) The role of common variants of ABCB1, CYP3A4, and CYP3A5 genes in lipid-lowering efficacy and safety of simvastatin treatment. Clinical Pharmacology and Therapeutics 78(5):551–558. https://doi.org/10.1016/j.clpt.2005.08.003. (PMID: 10.1016/j.clpt.2005.08.00316321621)
      Smith NF, Figg WD, Sparreboom A (2005) Role of the liver-specific transporters OATP1B1 and OATP1B3 in governing drug elimination. Expert Opin Drug Metab Toxicol 1(3):429–445. https://doi.org/10.1517/17425255.1.3.429. (PMID: 10.1517/17425255.1.3.42916863454)
      Nishizato Y, Ieiri I, Suzuki H, Kimura M, Kawabata K, Hirota T, Takane H, Irie S, Kusuhara H, Urasaki Y, Urae A, Higuchi S, Otsubo K, Sugiyama Y (2003) Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clinical pharmacology and therapeutics 73(6):554–565. https://doi.org/10.1016/s0009-9236(03)00060-2. (PMID: 10.1016/s0009-9236(03)00060-212811365)
      Norata GD, Tibolla G, Catapano AL (2014) Statins and skeletal muscles toxicity: from clinical trials to everyday practice. Pharmacol Res 88:107–113. https://doi.org/10.1016/j.phrs.2014.04.012. (PMID: 10.1016/j.phrs.2014.04.01224835295)
    • Grant Information:
      2016YFC0904900 National Key R&D Program of China; 81872940, 81973395 National Natural Science Foundation; 7171012 Natural Science Foundation of Beijing Municipality; 2017ZX09304028, 2017ZX09101001 National Science and Technology Major Projects for Major New Drugs Innovation and Development of China
    • Contributed Indexing:
      Keywords: Hydroxymethylglutaryl-CoA reductase inhibitor; Meta-analysis; Mitochondrial myopathy; Single-nucleotide polymorphism
    • Accession Number:
      0 (Hydroxymethylglutaryl-CoA Reductase Inhibitors)
      0 (Liver-Specific Organic Anion Transporter 1)
      0 (SLCO1B1 protein, human)
      EC 2.1.4.- (Amidinotransferases)
      EC 2.1.4.1 (glycine amidinotransferase)
    • Publication Date:
      Date Created: 20201105 Date Completed: 20211021 Latest Revision: 20211021
    • Publication Date:
      20221213
    • Accession Number:
      10.1007/s00228-020-03029-1
    • Accession Number:
      33150478