A Novel Isolate (S15) of Streptomyces griseobrunneus Produces 1-Dodecanol.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Çetinkaya S;Çetinkaya S
  • Source:
    Current microbiology [Curr Microbiol] 2021 Jan; Vol. 78 (1), pp. 144-149. Date of Electronic Publication: 2020 Oct 29.
  • Publication Type:
    Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Springer International Country of Publication: United States NLM ID: 7808448 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0991 (Electronic) Linking ISSN: 03438651 NLM ISO Abbreviation: Curr Microbiol Subsets: MEDLINE
    • Publication Information:
      Original Publication: New York, Springer International.
    • Subject Terms:
    • Abstract:
      One-dodecanol was identified to be the predominant secondary metabolite of a novel isolate (S15) of Streptomyces griseobrunneus. For its demonstration, secondary metabolite extracts were electrophoresed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). A yellowish unique band was then cut out from the gel and its metabolite content was eluted in n-butanol. GC-MS analysis indicated that more than 93% of the of the elution material were 1-dodecanol. The compound was further characterized by FTIR and 13 C NMR analyses. Dendrogram built on the basis of 16S rRNA gene sequence indicated that the isolate S15 was a member of Streptomyces griseobrunneus.
    • References:
      Ritacco FV, Haltli B, Janso JE, Greenstein M, Bernan VS (2003) Dereplication of Streptomyces soil isolates and detection of specific biosynthetic genes using an automated ribotyping instrument. J IndMicrobiolBiotechnol 30:472–479. https://doi.org/10.1007/s10295-003-0038-0. (PMID: 10.1007/s10295-003-0038-0)
      Demain AL (1999) Pharmaceutically active secondary metabolites of microorganisms. ApplMicrobiolBiotechnol 52:455–463. https://doi.org/10.1007/s002530051546. (PMID: 10.1007/s002530051546)
      Hopwood DA, Bibb MJ, Chater KF, Janssen GR, Malpartida F, Smith CP (1986) Regulation of gene expression in antibiotic-producing Streptomyces. In: Booth IR, Higgins CF (eds) Regulation of gene expression-25 years on. Cambridge University Press, Cambridge, pp 257–276.
      Madigan M, Martinko J (2005) Brock biology of microorganisms, 11th edn. Prentice-Hall, New Jersey, USA.
      Chater KF (2016) Recent advances in understanding Streptomyces. F1000Research 5:2795. https://doi.org/10.12688/f1000research.9534.1. (PMID: 10.12688/f1000research.9534.1279902765133688)
      Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA et al (2002) Complete genome sequence of the model actinomyceteStreptomyces coelicolor A3(2). Nature 417(6885):141–147. https://doi.org/10.1038/417141a. (PMID: 10.1038/417141a12000953)
      Williams ST, Entwistle S, Kurylowicz W (1974) The morphology of Streptomyces growing in media used for commercial production of antibiotics. Microbios 11A:47–60.
      Pirt SJ (1967) A kinetic study of the mode of growth of surface colonies of bacteria and fungi. J Gen Microbiol 47:181–197. https://doi.org/10.1099/00221287-47-2-181. (PMID: 10.1099/00221287-47-2-1816045659)
      Martin JF, Demain AL (1980) Control of antibiotic synthesis. Microbiol Rev 44:230–251. (PMID: 10.1128/MR.44.2.230-251.1980)
      van Keulen G, Dyson PJ (2014) Production of specialized metabolites by Streptomyces coelicolor A3 (2). ApplMicrobiol 89:217–266. https://doi.org/10.1016/B978-0-12-800259-9.00006-8. (PMID: 10.1016/B978-0-12-800259-9.00006-8)
      Oskay M (2011) Effects of some environmental conditions on biomass and antimicrobial metabolite production by Streptomyces sp., KGG32. Int J AgricBiol 13:317–324.
      Ren H, Zhang P, Liu C, Xue Y, Lian B (2009) The potential use of bacterium strain R219 for controlling of the bloom-forming cyanobacteria in freshwater lake. World J MicrobiolBiotechnol 26:465–472. https://doi.org/10.1007/s11274-009-0192-2. (PMID: 10.1007/s11274-009-0192-2)
      Mureşan EA, Muste S, Socacı SA, Vlaıc RA, Racolţa E, Mureşan V (2014) Volatile compounds profile during storage of Ionathan, Starkrimson and Golden delicious apple varieties. Bull UASVM Food SciTechnol 71:173–178. https://doi.org/10.15835/buasvmcn-fst:10851. (PMID: 10.15835/buasvmcn-fst:10851)
      Saini S (2016) Analyses of the volatile oil constituents of Landolphia owariensis p. BeauvInt J Educ Res 2:79–80.
      Chung HY, Cadwallader KR (1993) Volatile components in blue crab (Callinectes sapidus) meat and processing by-product. J Food Sci 58:1203–1207. https://doi.org/10.1111/j.1365-2621.1993.tb06148.x. (PMID: 10.1111/j.1365-2621.1993.tb06148.x)
      Motteran F, Nascimento RF, Nadai BM, Titato GM, Neto AJS, Silva EL, Varesche MBA (2019) Identification of anionic and nonionic surfactant and recalcitrants compounds in commercial laundry wastewater by GC–MS analysis after anaerobic fluidized bed reactor treatment. Water Air Soil Pollut 230:301. https://doi.org/10.1007/s11270-019-4357-9. (PMID: 10.1007/s11270-019-4357-9)
      Watanabe K, Imai S, Mori YH (2005) Surfactant effects on hydrate formation in an unstirred gas/liquid system: an experimental study using HFC-32 and sodium dodecyl sulfate. ChemEngSci 60:4846–4857. https://doi.org/10.1016/j.ces.2005.03.043. (PMID: 10.1016/j.ces.2005.03.043)
      UshaNandhini S, Sudha S, Anusha JV, Manisha S (2018) Isolation, identification and extraction of antimicrobial compounds produced by Streptomyces sps from terrestrial soil. BiocatalAgricBiotechnol 5:317–321. https://doi.org/10.1016/j.bcab.2018.06.024. (PMID: 10.1016/j.bcab.2018.06.024)
      Yavuz E, Gunes H, Bulut C, Harsa Ş, Yenidünya AF (2004) RFLP of 16S-ITS rDNA region to differentiate Lactobacilli at species level. World J Microbiol Biotech 20:535–537. https://doi.org/10.1023/B:WIBI.0000043151.09366.d7. (PMID: 10.1023/B:WIBI.0000043151.09366.d7)
      Wilson KH, Blitchington RB, Green RC (1990) Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J ClinMicrobiol 28:1942–1946.
      Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. J BioinformSeq Anal 537:39–64. https://doi.org/10.1007/978-1-59745-251-9-3. (PMID: 10.1007/978-1-59745-251-9-3)
      Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J MolEvol 16:111–120. https://doi.org/10.1007/BF01731581. (PMID: 10.1007/BF01731581)
      Çetinkaya S, Yenidünya AF, Arslan K, Arslan D, Doğan Ö, Daştan T (2020) Secondary metabolites of an of Streptomyces griseorubens isolate are predominantly pyrrole- and linoleic-acid like compounds. J Oleo Sci 69(10):1273–1280. https://doi.org/10.5650/jos.ess20161. (PMID: 10.5650/jos.ess2016132908102)
      Fleck W, Strauss D, Schönfeld C, Jungstand W, Seeber C, Prauser H (1972) Screening, fermentation, isolation, and characterization of Trypanomycin, a new antibiotic. Antimicrob Agents Chemother 1:385–391. https://doi.org/10.1128/AAC.1.5.385. (PMID: 10.1128/AAC.1.5.3854670479444229)
      SDBS Spektrum No. 2400. https://www.aist.go.jp/RIODB/SDBS.
    • Grant Information:
      F-626 CÜBAP
    • Accession Number:
      0 (RNA, Ribosomal, 16S)
      178A96NLP2 (Dodecanol)
      368GB5141J (Sodium Dodecyl Sulfate)
    • Subject Terms:
      Streptomyces griseobrunneus
    • Publication Date:
      Date Created: 20201030 Date Completed: 20210514 Latest Revision: 20210514
    • Publication Date:
      20221213
    • Accession Number:
      10.1007/s00284-020-02261-3
    • Accession Number:
      33123751