Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Testing the effect of tACS over parietal cortex in modulating endogenous alpha rhythm and temporal integration windows in visual perception.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: Wiley-Blackwell Country of Publication: France NLM ID: 8918110 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1460-9568 (Electronic) Linking ISSN: 0953816X NLM ISO Abbreviation: Eur J Neurosci Subsets: MEDLINE
- Publication Information:
Publication: : Oxford : Wiley-Blackwell
Original Publication: Oxford, UK : Published on behalf of the European Neuroscience Association by Oxford University Press, c1989-
- Subject Terms:
- Abstract:
Neural oscillations in the alpha band (8-12 Hz) have been proposed as a key mechanism for the temporal resolution of visual perception. Higher alpha frequencies have been related to improved segregation of visual events over time, whereas lower alpha frequencies have been related to improved temporal integration. Similarly, also the phase of ongoing alpha has been shown to correlate with temporal integration/segregation. To test a causal relationship between alpha oscillations and perception, we here employed multi-channel transcranial alternating current stimulation (mc-tACS) over the right parietal cortex, whereas participants performed a visual temporal integration/segregation task that used identical stimuli with different instructions. Before and after mc-tACS we recorded the resting-state electroencephalogram (EEG) to extract the individual alpha frequency (IAF) and delivered electrical stimulation at slightly slower and faster frequencies (IAF±2 Hz). We hypothesized that this would not only drive endogenous alpha rhythms, but also affect temporal integration and segregation in an opposite way. However, the mc-tACS protocol used here did not consistently increase or decrease the IAF after the stimulation and did not affect temporal integration/segregation accuracy as expected. Although we found some preliminary evidence for an influence of tACS phase on temporal integration accuracy, the ongoing phase of mc-tACS oscillations did not reliably modulate temporal integration/segregation accuracy in a sinusoidal way as would have been predicted by an effective entrainment of brain oscillations. These findings may guide future studies using different stimulation montages for investigating the role of cortical alpha oscillations for human vision.
(© 2020 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.)
- References:
J Cogn Neurosci. 2012 Dec;24(12):2321-33. (PMID: 22905825)
Curr Biol. 2014 Feb 3;24(3):333-9. (PMID: 24461998)
Front Psychol. 2011 Jul 20;2:170. (PMID: 21811485)
J Neurosci. 2009 Mar 4;29(9):2725-32. (PMID: 19261866)
Brain Topogr. 2020 May;33(3):317-326. (PMID: 32146587)
Sci Rep. 2016 Sep 12;6:32065. (PMID: 27616188)
J Neurosci. 2017 Nov 1;37(44):10636-10644. (PMID: 28972130)
Front Psychol. 2020 Jul 31;11:1765. (PMID: 32849045)
Neuroimage. 2012 Nov 1;63(2):771-8. (PMID: 22836177)
Philos Trans R Soc Lond B Biol Sci. 2009 Jul 12;364(1525):1887-96. (PMID: 19487191)
J Neurosci. 2008 Feb 20;28(8):1816-23. (PMID: 18287498)
Vision Res. 1974 Nov;14(11):1059-69. (PMID: 4428612)
Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19377-82. (PMID: 22084106)
Curr Biol. 2015 Aug 31;25(17):2332-7. (PMID: 26279231)
Trends Cogn Sci. 2016 Oct;20(10):723-735. (PMID: 27567317)
Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):13435-13440. (PMID: 29203678)
Trends Cogn Sci. 2007 May;11(5):204-10. (PMID: 17379569)
Curr Biol. 2016 Jul 11;26(13):1659-1668. (PMID: 27291050)
Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):1346-1351. (PMID: 29358390)
Brain Stimul. 2015 May-Jun;8(3):499-508. (PMID: 25648377)
J Cogn Neurosci. 2014 Feb;26(2):422-32. (PMID: 24116843)
Psychol Bull. 1967 Jul;68(1):47-58. (PMID: 4859873)
Curr Biol. 2012 Jul 24;22(14):1314-8. (PMID: 22683259)
J Neural Eng. 2011 Aug;8(4):046011. (PMID: 21659696)
PLoS Biol. 2018 Mar 14;16(3):e2005348. (PMID: 29538384)
Atten Percept Psychophys. 2019 Feb;81(2):433-441. (PMID: 30426335)
J Vis. 2019 May 1;19(5):22. (PMID: 31121012)
Nat Commun. 2018 Nov 30;9(1):5092. (PMID: 30504921)
Trends Cogn Sci. 2012 Apr;16(4):200-6. (PMID: 22436764)
Front Psychol. 2014 Aug 27;5:952. (PMID: 25221534)
Neuroimage. 2016 Jun;133:53-61. (PMID: 26924284)
Annu Rev Neurosci. 2011;34:569-99. (PMID: 21692662)
Eur J Neurosci. 2022 Jun;55(11-12):3438-3450. (PMID: 33098112)
Science. 2004 Jun 25;304(5679):1926-9. (PMID: 15218136)
Sci Rep. 2017 Mar 09;7:43937. (PMID: 28276493)
Neuropsychologia. 1981;19(5):675-86. (PMID: 7312152)
J Neurosci. 2009 Jun 17;29(24):7869-76. (PMID: 19535598)
Conscious Cogn. 2018 Apr;60:98-126. (PMID: 29549714)
Brain Stimul. 2020 Sep - Oct;13(5):1402-1411. (PMID: 32735988)
PLoS One. 2013;8(3):e60035. (PMID: 23555873)
Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16048-53. (PMID: 20805482)
Curr Biol. 2013 Dec 16;23(24):2553-8. (PMID: 24316204)
Proc Natl Acad Sci U S A. 2015 Sep 29;112(39):12187-92. (PMID: 26324922)
Neuroimage. 2020 Mar;208:116451. (PMID: 31821867)
Multisens Res. 2017 Jan 1;30(6):565-578. (PMID: 31287091)
Front Hum Neurosci. 2010 Nov 04;4:186. (PMID: 21119777)
J Neurosci. 2014 Mar 5;34(10):3536-44. (PMID: 24599454)
Brain Stimul. 2018 Jan - Feb;11(1):118-124. (PMID: 29079460)
Electroencephalogr Clin Neurophysiol. 1957 Aug;9(3):497-504. (PMID: 13447855)
J Neurosci. 2014 Jan 22;34(4):1554-65. (PMID: 24453342)
Clin Neurophysiol. 2017 Sep;128(9):1774-1809. (PMID: 28709880)
Curr Biol. 2015 Nov 16;25(22):2985-90. (PMID: 26526370)
Int J Psychophysiol. 2016 May;103:12-21. (PMID: 25659527)
Brain Stimul. 2019 Jul - Aug;12(4):1001-1009. (PMID: 30930210)
Trends Neurosci. 2000 Nov;23(11):571-9. (PMID: 11074267)
Curr Biol. 2017 Aug 7;27(15):2344-2351.e4. (PMID: 28756954)
Neuron. 2007 Jan 18;53(2):279-92. (PMID: 17224408)
Sci Rep. 2018 Aug 7;8(1):11810. (PMID: 30087359)
Curr Biol. 2015 Jan 19;25(2):231-235. (PMID: 25544613)
Trends Cogn Sci. 2011 May;15(5):191-9. (PMID: 21481630)
Neuroscientist. 2018 Dec;24(6):609-626. (PMID: 29424265)
Front Hum Neurosci. 2018 May 25;12:211. (PMID: 29887799)
Psychon Bull Rev. 2020 Aug;27(4):724-734. (PMID: 32495210)
Spat Vis. 1997;10(4):433-6. (PMID: 9176952)
J Neurosci. 2011 Aug 17;31(33):11889-93. (PMID: 21849549)
Neuroimage. 2019 May 15;192:101-114. (PMID: 30844505)
Trends Cogn Sci. 2000 Sep;4(9):345-352. (PMID: 10962616)
Front Neurosci. 2019 Mar 15;13:232. (PMID: 30930740)
J Neurosci. 2010 Jun 23;30(25):8692-7. (PMID: 20573914)
Atten Percept Psychophys. 2018 Jul;80(5):1214-1228. (PMID: 29560606)
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:5894-5897. (PMID: 31947191)
J Exp Psychol. 1967 Aug;74(4):476-84. (PMID: 6065466)
Curr Biol. 2011 Jul 26;21(14):1176-85. (PMID: 21723129)
J Cogn Neurosci. 2015 May;27(5):945-58. (PMID: 25390199)
Neuron. 2010 Jul 15;67(1):129-43. (PMID: 20624597)
J Neurosci Methods. 2004 Mar 15;134(1):9-21. (PMID: 15102499)
- Contributed Indexing:
Keywords: EEG; neural oscillations; tES; timing; vision
- Publication Date:
Date Created: 20201024 Date Completed: 20220630 Latest Revision: 20221015
- Publication Date:
20221213
- Accession Number:
PMC9542321
- Accession Number:
10.1111/ejn.15017
- Accession Number:
33098112
No Comments.