Neonatal developmental and epileptic encephalopathy due to autosomal recessive variants in SLC13A5 gene.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Blackwell Science Country of Publication: United States NLM ID: 2983306R Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1528-1167 (Electronic) Linking ISSN: 00139580 NLM ISO Abbreviation: Epilepsia Subsets: MEDLINE
    • Publication Information:
      Publication: Malden, MA : Blackwell Science
      Original Publication: Copenhagen : Munskgaard
    • Subject Terms:
    • Abstract:
      Objective: Autosomal recessive pathogenic variants of the SLC13A5 gene are associated with severe neonatal epilepsy, developmental delay, and tooth hypoplasia/hypodontia. We report on 14 additional patients and compare their phenotypic features to previously published patients to identify the clinical hallmarks of this disorder.
      Methods: We collected clinical features of 14 patients carrying biallelic variants in SLC13A5 and performed a PubMed search to identify previously published patients.
      Results: All patients presented clonic or tonic seizures in the first days of life, evolving into status epilepticus in 57%. Analysis of seizure frequency and developmental milestones divided into five epochs showed an evolutionary trajectory of both items. In the first 3 years of life, 72% of patients had weekly/monthly seizures, often triggered by fever; 14% were seizure-free. Between the ages of 3 and 12 years, 60% become seizure-free; in the following years, up to age 18 years, 57% were seizure-free. After the age of 18 years, all three patients reaching this age were seizure-free. Similarly, 86% of patients at onset presented mild to moderate developmental impairment and diffuse hypotonia. In late childhood, all had developmental delay that was severe in most. Benzodiazepines, phenobarbital, phenytoin, and carbamazepine were the most effective drugs. Eight probands carried heterozygous compound variants, and homozygous pathogenic variants occurred in six. Literature review identified 45 patients carrying SLC13A5 gene pathogenic variants whose clinical features overlapped with our cohort. A peculiar and distinguishing sign is the presence of tooth hypoplasia and/or hypodontia in most patients.
      Significance: Autosomal recessive pathogenic variants in SLC13A5 are associated with a distinct neonatal epileptic encephalopathy evolving into severe cognitive and motor impairment, yet with seizures that settle down in late childhood. Tooth hypoplasia or hypodontia remains the peculiar feature. The SLC13A5 gene should be screened in neonatal epileptic encephalopathies; its recessive inheritance has relevance for genetic counseling.
      (© 2020 International League Against Epilepsy.)
    • References:
      Olson HE, Kelly M, LaCoursiere CM, Pinsky R, Tambunan D, Shain C, et al. Genetics and genotype-phenotype correlations in early onset epileptic encephalopathy with burst suppression. Ann Neurol. 2017;81(3):419-29.
      Ostrander BEP, Butterfield RJ, Pedersen BS, Farrell AJ, Layer RM, Ward A, et al. Whole-genome analysis for effective clinical diagnosis and gene discovery in early infantile epileptic encephalopathy. NPJ Genom Med. 2018;3:22.
      Thevenon J, Milh M, Feillet F, St-Onge J, Duffourd Y, Jugé C, et al. Mutations in SLC13A5 cause autosomal-recessive epileptic encephalopathy with seizure onset in the first days of life. Am J Hum Genet. 2014;95(1):113-20.
      Hardies K, de Kovel CG, Weckhuysen S, Asselbergh B, Geuens T, Deconinck T, et al. Recessive mutations in SLC13A5 result in a loss of citrate transport and cause neonatal epilepsy, developmental delay and teeth hypoplasia. Brain. 2015;138(Pt 11):3238-50.
      Bhutia YD, Kopel JJ, Lawrence JJ, Neugebauer V, Ganapathy V. Plasma membrane Na⁺-coupled citrate transporter (SLC13A5) and neonatal epileptic encephalopathy. Molecules. 2017;22(3):378.
      Fisher RS, Cross JH, French JA, Higurashi N, Hirsch E, Jansen FE, et al. Operational classification of seizure types by the International League Against Epilepsy: position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58(4):522-30.
      Antoniadi T, Buxton C, Dennis G, Forrester N, Smith D, Lunt P, et al. Application of targeted multi-gene panel testing for the diagnosis of inherited peripheral neuropathy provides a high diagnostic yield with unexpected phenotype-genotype variability. BMC Med Genet. 2015;16:84.
      Weeke LC, Brilstra E, Braun KP, Zonneveld-Huijssoon E, Salomons GS, Koeleman BP, et al. Punctate white matter lesions in full-term infants with neonatal seizures associated with SLC13A5 mutations. Eur J Paediatr Neurol. 2017;21(2):396-403.
      Klotz J, Porter BE, Colas C, Schlessinger A, Pajor AM. Mutations in the Na(+)/citrate cotransporter NaCT (SLC13A5) in pediatric patients with epilepsy and developmental delay. Mol Med. 2016;22:310-21.
      Schossig A, Bloch-Zupan A, Lussi A, Wolf NI, Raskin S, Cohen M, et al. SLC13A5 is the second gene associated with Kohlschütter-Tönz syndrome. J Med Genet. 2017;54(1):54-62.
      Bainbridge MN, Cooney E, Miller M, Kennedy AD, Wulff JE, Donti T, et al. Analyses of SLC13A5-epilepsy patients reveal perturbations of TCA cycle. Mol Genet Metab. 2017;121(4):314-9.
      Anselm I, MacCuaig M, Prabhu SB, Berry GT. Disease heterogeneity in Na+/citrate cotransporter deficiency. JIMD Rep. 2017;31:107-11.
      Alhakeem A, Alshibani F, Tabarki B. Extending the use of stiripentol to SLC13A5-related epileptic encephalopathy. Brain Dev. 2018;40(9):827-9.
      Vilan A, Mendes Ribeiro J, Striano P, Weckhuysen S, Weeke LC, Brilstra E, et al. A distinctive ictal amplitude-integrated electroencephalography pattern in newborns with neonatal epilepsy associated with KCNQ2 mutations. Neonatology. 2017;112(4):387-93.
      Wolff M, Johannesen KM, Hedrich UBS, Masnada S, Rubboli G, Gardella E, et al. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain. 2017;140(5):1316-36.
      Stockler S, Plecko B, Gospe SM Jr, Coulter-Mackie M, Connolly M, van Karnebeek C, et al. Pyridoxine dependent epilepsy and antiquitin deficiency: clinical and molecular characteristics and recommendations for diagnosis, treatment and follow-up. Mol Genet Metab. 2011;104(1-2):48-60.
      Barcia G, Fleming MR, Deligniere A, Gazula VR, Brown MR, Langouet M, et al. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat Genet. 2012;44(11):1255-9.
      Masnada S, Hedrich UBS, Gardella E, Schubert J, Kaiwar C, Klee EW, et al. Clinical spectrum and genotype-phenotype associations of KCNA2-related encephalopathies. Brain. 2017;140(9):2337-54.
      Stamberger H, Nikanorova M, Willemsen MH, Accorsi P, Angriman M, Baier H, et al. STXBP1 encephalopathy: a neurodevelopmental disorder including epilepsy. Neurology. 2016;86(10):954-62.
      Kato M, Saitsu H, Murakami Y, Kikuchi K, Watanabe S, Iai M, et al. PIGA mutations cause early-onset epileptic encephalopathies and distinctive features. Neurology. 2014;82(18):1587-96.
      Jaeken J. Congenital disorders of glycosylation. Handb Clin Neurol. 2013;113:1737-43.
      Fiumara A, Barone R, Del Campo G, Striano P, Jaeken J. Electroclinical features of early-onset epileptic encephalopathies in congenital disorders of glycosylation (CDGs). JIMD Rep. 2016;27:93-9.
      Bahi-Buisson N, Kaminska A, Boddaert N, Rio M, Afenjar A, Gérard M, et al. The three stages of epilepsy in patients with CDKL5 mutations. Epilepsia. 2008;49(6):1027-37.
    • Grant Information:
      Project Ricerca Finalizzata Giovani Ricercatori 20 International Italian Ministry of Health; International Ministry of Health
    • Contributed Indexing:
      Keywords: SLC13A5 gene; autosomal recessive; development; epileptic encephalopathy; neonatal; tooth hypoplasia
    • Accession Number:
      0 (SLC13A5 protein, human)
      0 (Symporters)
    • Publication Date:
      Date Created: 20201016 Date Completed: 20210203 Latest Revision: 20210203
    • Publication Date:
      20221213
    • Accession Number:
      10.1111/epi.16699
    • Accession Number:
      33063863