Negative feedback control of neuronal activity by microglia.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
    • Publication Information:
      Publication: Basingstoke : Nature Publishing Group
      Original Publication: London, Macmillan Journals ltd.
    • Subject Terms:
    • Abstract:
      Microglia, the brain's resident macrophages, help to regulate brain function by removing dying neurons, pruning non-functional synapses, and producing ligands that support neuronal survival 1 . Here we show that microglia are also critical modulators of neuronal activity and associated behavioural responses in mice. Microglia respond to neuronal activation by suppressing neuronal activity, and ablation of microglia amplifies and synchronizes the activity of neurons, leading to seizures. Suppression of neuronal activation by microglia occurs in a highly region-specific fashion and depends on the ability of microglia to sense and catabolize extracellular ATP, which is released upon neuronal activation by neurons and astrocytes. ATP triggers the recruitment of microglial protrusions and is converted by the microglial ATP/ADP hydrolysing ectoenzyme CD39 into AMP; AMP is then converted into adenosine by CD73, which is expressed on microglia as well as other brain cells. Microglial sensing of ATP, the ensuing microglia-dependent production of adenosine, and the adenosine-mediated suppression of neuronal responses via the adenosine receptor A 1 R are essential for the regulation of neuronal activity and animal behaviour. Our findings suggest that this microglia-driven negative feedback mechanism operates similarly to inhibitory neurons and is essential for protecting the brain from excessive activation in health and disease.
    • Comments:
      Comment in: Nature. 2020 Oct;586(7829):366-367. (PMID: 32999439)
      Comment in: Purinergic Signal. 2020 Dec;16(4):477-478. (PMID: 33404957)
      Comment in: Signal Transduct Target Ther. 2021 Apr 17;6(1):160. (PMID: 33866328)
    • References:
      Werneburg, S., Feinberg, P. A., Johnson, K. M. & Schafer, D. P. A microglia-cytokine axis to modulate synaptic connectivity and function. Curr. Opin. Neurobiol. 47, 138–145 (2017). (PMID: 290962425797987)
      Li, Y., Du, X. F., Liu, C. S., Wen, Z. L. & Du, J. L. Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev. Cell 23, 1189–1202 (2012). (PMID: 23201120)
      Eyo, U. B. et al. Neuronal hyperactivity recruits microglial processes via neuronal NMDA receptors and microglial P2Y12 receptors after status epilepticus. J. Neurosci. 34, 10528–10540 (2014). (PMID: 251005874200107)
      Akiyoshi, R. et al. Microglia enhance synapse activity to promote local network synchronization. eNeuro 5, ENEURO.0088-18.2018 (2018). (PMID: 304061986220592)
      Kato, G. et al. Microglial contact prevents excess depolarization and rescues neurons from excitotoxicity. eNeuro 3, ENEURO.0004-16.2016 (2016). (PMID: 273907724916329)
      Wake, H., Moorhouse, A. J., Jinno, S., Kohsaka, S. & Nabekura, J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29, 3974–3980 (2009). (PMID: 193395936665392)
      Peng, J. et al. Microglial P2Y12 receptor regulates ventral hippocampal CA1 neuronal excitability and innate fear in mice. Mol. Brain 12, 71 (2019). (PMID: 314268456700820)
      Cserép, C. et al. Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science 367, 528–537 (2020). (PMID: 31831638)
      Bernier, L. P. et al. Nanoscale surveillance of the brain by microglia via cAMP-regulated filopodia. Cell Rep. 27, 2895–2908.e4 (2019). (PMID: 31167136)
      Madry, C. et al. Microglial ramification, surveillance, and interleukin-1β release are regulated by the two-pore domain K + channel THIK-1. Neuron 97, 299–312.e6 (2018). (PMID: 292905525783715)
      Liu, Y. U. et al. Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling. Nat. Neurosci. 22, 1771–1781 (2019). (PMID: 316364496858573)
      Stowell, R. D. et al. Noradrenergic signaling in the wakeful state inhibits microglial surveillance and synaptic plasticity in the mouse visual cortex. Nat. Neurosci. 22, 1782–1792 (2019). (PMID: 316364516875777)
      Elmore, M. R. P. et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82, 380–397 (2014). (PMID: 247424614161285)
      Bozzi, Y. & Borrelli, E. The role of dopamine signaling in epileptogenesis. Front. Cell. Neurosci. 7, 157 (2013). (PMID: 240626453774988)
      Chitu, V., Gokhan, Ş., Nandi, S., Mehler, M. F. & Stanley, E. R. Emerging roles for CSF-1 receptor and its ligands in the nervous system. Trends Neurosci. 39, 378–393 (2016). (PMID: 270834784884457)
      Kana, V. et al. CSF-1 controls cerebellar microglia and is required for motor function and social interaction. J. Exp. Med. 216, 2265–2281 (2019). (PMID: 313503106781012)
      Easley-Neal, C., Foreman, O., Sharma, N., Zarrin, A. A. & Weimer, R. M. CSF1R ligands IL-34 and CSF1 are differentially required for microglia development and maintenance in white and gray matter brain regions. Front. Immunol. 10, 2199 (2019). (PMID: 316164146764286)
      Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030.e16 (2018). (PMID: 300962996447408)
      Wenzel, M., Hamm, J. P., Peterka, D. S. & Yuste, R. Acute focal seizures start as local synchronizations of neuronal ensembles. J. Neurosci. 39, 8562–8575 (2019). (PMID: 314273936807279)
      Pankratov, Y., Lalo, U., Verkhratsky, A. & North, R. A. Vesicular release of ATP at central synapses. Pflugers Arch. 452, 589–597 (2006). (PMID: 16639550)
      Pascual, O. et al. Neurobiology: astrocytic purinergic signaling coordinates synaptic networks. Science 310, 113–116 (2005). (PMID: 16210541)
      Corkrum, M. et al. Dopamine-evoked synaptic regulation in the nucleus accumbens requires astrocyte activity. Neuron 105, 1036–1047.e5 (2020). (PMID: 319546217322729)
      Beamer, E., Conte, G. & Engel, T. ATP release during seizures—a critical evaluation of the evidence. Brain Res. Bull. 151, 65–73 (2019). (PMID: 30660718)
      Haynes, S. E. et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat. Neurosci. 9, 1512–1519 (2006). (PMID: 17115040)
      Ayata, P. et al. Epigenetic regulation of brain region-specific microglia clearance activity. Nat. Neurosci. 21, 1049–1060 (2018). (PMID: 300382826090564)
      Madry, C. et al. Effects of the ecto-ATPase apyrase on microglial ramification and surveillance reflect cell depolarization, not ATP depletion. Proc. Natl Acad. Sci. USA 115, E1608–E1617 (2018). (PMID: 293827675816168)
      Dissing-Olesen, L. et al. Activation of neuronal NMDA receptors triggers transient ATP-mediated microglial process outgrowth. J. Neurosci. 34, 10511–10527 (2014). (PMID: 251005866802598)
      Robson, S. C., Sévigny, J. & Zimmermann, H. The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal. 2, 409–430 (2006). (PMID: 184044802254478)
      Lanser, A. J. et al. Disruption of the ATP/adenosine balance in CD39 −/− mice is associated with handling-induced seizures. Immunology 152, 589–601 (2017). (PMID: 287422225680053)
      Dunwiddie, T. V. & Masino, S. A. The role and regulation of adenosine in the central nervous system. Annu. Rev. Neurosci. 24, 31–55 (2001). (PMID: 11283304)
      Zimmermann, H., Zebisch, M. & Sträter, N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal. 8, 437–502 (2012). (PMID: 225555643360096)
      Flagmeyer, I., Haas, H. L. & Stevens, D. R. Adenosine A1 receptor-mediated depression of corticostriatal and thalamostriatal glutamatergic synaptic potentials in vitro. Brain Res. 778, 178–185 (1997). (PMID: 9462890)
      Yabuuchi, K. et al. Role of adenosine A1 receptors in the modulation of dopamine D1 and adenosine A2A receptor signaling in the neostriatum. Neuroscience 141, 19–25 (2006). (PMID: 16750892)
      Trusel, M. et al. Coordinated regulation of synaptic plasticity at striatopallidal and striatonigral neurons orchestrates motor control. Cell Rep. 13, 1353–1365 (2015). (PMID: 26549453)
      Zhou, S. et al. Pro-inflammatory effect of downregulated CD73 expression in EAE astrocytes. Front. Cell. Neurosci. 13, 233 (2019). (PMID: 311912546549520)
      Bateup, H. S. et al. Cell type-specific regulation of DARPP-32 phosphorylation by psychostimulant and antipsychotic drugs. Nat. Neurosci. 11, 932–939 (2008). (PMID: 186224012737705)
      Wendeln, A. C. et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556, 332–338 (2018). (PMID: 296435126038912)
      Süß, P. et al. Chronic peripheral inflammation causes a region-specific myeloid response in the central nervous system. Cell Rep. 30, 4082–4095.e6 (2020). (PMID: 32209470)
      Krasemann, S. et al. The TREM2–APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581.e9 (2017). (PMID: 289306635719893)
      Mildner, A., Huang, H., Radke, J., Stenzel, W. & Priller, J. P2Y 12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia 65, 375–387 (2017). (PMID: 27862351)
      Palop, J. J. et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron 55, 697–711 (2007). (PMID: 177851788055171)
      Lam, A. D. et al. Silent hippocampal seizures and spikes identified by foramen ovale electrodes in Alzheimer’s disease. Nat. Med. 23, 678–680 (2017). (PMID: 284594365461182)
      Wohleb, E. S., Franklin, T., Iwata, M. & Duman, R. S. Integrating neuroimmune systems in the neurobiology of depression. Nat. Rev. Neurosci. 17, 497–511 (2016). (PMID: 27277867)
      Spangenberg, E. E. et al. Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-β pathology. Brain 139, 1265–1281 (2016). (PMID: 269216175006229)
      Bejar, R., Yasuda, R., Krugers, H., Hood, K. & Mayford, M. Transgenic calmodulin-dependent protein kinase II activation: dose-dependent effects on synaptic plasticity, learning, and memory. J. Neurosci. 22, 5719–5726 (2002). (PMID: 120975246758231)
      Alexander, G. M. et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63, 27–39 (2009). (PMID: 196077902751885)
      Stanley, S. et al. Profiling of glucose-sensing neurons reveals that ghrh neurons are activated by hypoglycemia. Cell Metab. 18, 596–607 (2013). (PMID: 24093682)
      Parkhurst, C. N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596–1609 (2013). (PMID: 243602804033691)
      Wang, Y. et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13, 753–760 (2012). (PMID: 227292493941469)
      Tronche, F. et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat. Genet. 23, 99–103 (1999). (PMID: 10471508)
      Harris, S. E. et al. Meox2Cre-mediated disruption of CSF-1 leads to osteopetrosis and osteocyte defects. Bone 50, 42–53 (2012). (PMID: 21958845)
      Rothweiler, S. et al. Selective deletion of ENTPD1/CD39 in macrophages exacerbates biliary fibrosis in a mouse model of sclerosing cholangitis. Purinergic Signal. 15, 375–385 (2019). (PMID: 312436146737175)
      Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013). (PMID: 23273845)
      Scammell, T. E. et al. Focal deletion of the adenosine A1 receptor in adult mice using an adeno-associated viral vector. J. Neurosci. 23, 5762–5770 (2003). (PMID: 128432806741251)
      Thompson, L. F. et al. Crucial role for ecto-5′-nucleotidase (CD73) in vascular leakage during hypoxia. J. Exp. Med. 200, 1395–1405 (2004). (PMID: 155830131237012)
      André, P. et al. P2Y12 regulates platelet adhesion/activation, thrombus growth, and thrombus stability in injured arteries. J. Clin. Invest. 112, 398–406 (2003). (PMID: 12897207166294)
      Oakley, H. et al. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J. Neurosci. 26, 10129–10140 (2006). (PMID: 170211696674618)
      Casanova, E. et al. A CamKIIα iCre BAC allows brain-specific gene inactivation. Genesis 31, 37–42 (2001). (PMID: 11668676)
      Doyle, J. P. et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135, 749–762 (2008). (PMID: 190132822763427)
      Heiman, M. et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–748 (2008). (PMID: 190132812696821)
      von Schimmelmann, M. et al. Polycomb repressive complex 2 (PRC2) silences genes responsible for neurodegeneration. Nat. Neurosci. 19, 1321–1330 (2016).
      Kim, D. & Salzberg, S. L. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol. 12, R72 (2011). (PMID: 218350073245612)
      Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015). (PMID: 25260700)
      Purushothaman, I. & Shen, L. SPEctRA: a scalable pipeline for RNA -seq ana lysis. https://zenodo.org/record/60547#.X1khQDNKjIU (2016).
      Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). (PMID: 255162814302049)
      Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017). (PMID: 280994145404890)
      Hickman, S. E. et al. The microglial sensome revealed by direct RNA sequencing. Nat. Neurosci. 16, 1896–1905 (2013). (PMID: 241626523840123)
      Howe, E. A., Sinha, R., Schlauch, D. & Quackenbush, J. RNA-seq analysis in MeV. Bioinformatics 27, 3209–3210 (2011). (PMID: 219764203208390)
      Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013). (PMID: 235864633637064)
      Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44 (W1), W90−W97 (2016). (PMID: 271419614987924)
      Gokce, O. et al. Cellular taxonomy of the mouse striatum as revealed by single-cell RNA-seq. Cell Rep. 16, 1126–1137 (2016). (PMID: 274256225004635)
      Bohlen, C. J., Bennett, F. C. & Bennett, M. L. Isolation and culture of microglia. Curr. Protoc. Immunol. 125, e70 (2019). (PMID: 30414379)
      Butovsky, O. et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17, 131–143 (2014). (PMID: 24316888)
      Gabriel, L. R., Wu, S. & Melikian, H. E. Brain slice biotinylation: an ex vivo approach to measure region-specific plasma membrane protein trafficking in adult neurons. J. Vis. Exp. 86, e51240 (2014).
      Crupi, M. J. F., Richardson, D. S. & Mulligan, L. M. Cell surface biotinylation of receptor tyrosine kinases to investigate intracellular trafficking. Methods Mol. Biol. 1233, 91–102 (2015). (PMID: 25319892)
      Sullivan, J. M. et al. Autism-like syndrome is induced by pharmacological suppression of BET proteins in young mice. J. Exp. Med. 212, 1771–1781 (2015). (PMID: 263922214612093)
      Pnevmatikakis, E. A. & Giovannucci, A. NoRMCorre: an online algorithm for piecewise rigid motion correction of calcium imaging data. J. Neurosci. Methods 291, 83–94 (2017). (PMID: 28782629)
      Pachitariu, M. et al. Suite2p: beyond 10,000 neurons with standard two-photon microscopy. Preprint at https://www.biorxiv.org/content/10.1101/061507v2 (2016).
      Yoder, N. C. peakfinder(x0, sel, thresh, extrema, includeEndpoints, interpolate). https://www.mathworks.com/matlabcentral/fileexchange/25500-peakfinder-x0-sel-thresh-extrema-includeendpoints-interpolate (Matlab Central File Exchange, 2016).
      Klaus, A. et al. The spatiotemporal organization of the striatum encodes action space. Neuron 95, 1171–1180.e7 (2017). (PMID: 288586195584673)
      Barbera, G. et al. Spatially compact neural clusters in the dorsal striatum encode locomotion relevant information. Neuron 92, 202–213 (2016). (PMID: 276670035087607)
      Kato, D. et al. in Microglia. Methods in Molecular Biology (eds. Garaschuk, O. & Verkhratsky A.) (Humana, 2019).
      Thévenaz, P., Ruttimann, U. E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27–41 (1998). (PMID: 18267377)
      Ting, J. T. et al. Preparation of acute brain slices using an optimized N-methyl-d-glucamine protective recovery method. J. Vis. Exp. 132, e53825 (2018).
      Fieblinger, T. et al. Cell type-specific plasticity of striatal projection neurons in parkinsonism and L-DOPA-induced dyskinesia. Nat. Commun. 5, 5316 (2014). (PMID: 25360704)
      Graves, S. M. & Surmeier, D. J. Delayed spine pruning of direct pathway spiny projection neurons in a mouse model of parkinson’s disease. Front. Cell. Neurosci. 13, 32 (2019). (PMID: 308091286379265)
      Wong, J. M. T. et al. Benzoyl chloride derivatization with liquid chromatography-mass spectrometry for targeted metabolomics of neurochemicals in biological samples. J. Chromatogr. A 1446, 78–90 (2016). (PMID: 270832584845038)
      Gangarossa, G. et al. Convulsant doses of a dopamine D1 receptor agonist result in Erk-dependent increases in Zif268 and Arc/Arg3.1 expression in mouse dentate gyrus. PLoS One 6, e19415 (2011). (PMID: 215592953086923)
      Bunch, L. & Krogsgaard-Larsen, P. Subtype selective kainic acid receptor agonists: discovery and approaches to rational design. Med. Res. Rev. 29, 3–28 (2009). (PMID: 18623169)
      Willoughby, J. O., Mackenzie, L., Medvedev, A. & Hiscock, J. J. Distribution of Fos-positive neurons in cortical and subcortical structures after picrotoxin-induced convulsions varies with seizure type. Brain Res. 683, 73–87 (1995). (PMID: 7552347)
      Sipe, G. O. et al. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex. Nat. Commun. 7, 10905 (2016). (PMID: 269481294786684)
      Racine, R. J. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr. Clin. Neurophysiol. 32, 281–294 (1972). (PMID: 4110397)
      Silverman, J. L., Yang, M., Lord, C. & Crawley, J. N. Behavioural phenotyping assays for mouse models of autism. Nat. Rev. Neurosci. 11, 490–502 (2010). (PMID: 205593363087436)
      Langfelder, P. et al. Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice. Nat. Neurosci. 19, 623–633 (2016). (PMID: 269009235984042)
      Wang, Y. et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160, 1061–1071 (2015). (PMID: 257286684477963)
      Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017). (PMID: 28602351)
      Sousa, C. et al. Single-cell transcriptomics reveals distinct inflammation-induced microglia signatures. EMBO Rep. 19, e46171 (2018). (PMID: 302061906216255)
    • Grant Information:
      KL2 TR002245 United States TR NCATS NIH HHS; R00 DA042111 United States DA NIDA NIH HHS; U01 AI066331 United States AI NIAID NIH HHS; P01 HL107152 United States HL NHLBI NIH HHS; R35 GM136429 United States GM NIGMS NIH HHS; R01 NS106721 United States NS NINDS NIH HHS; R01 NS102807 United States NS NINDS NIH HHS; P01 DA047233 United States DA NIDA NIH HHS; DP1 DA048931 United States DA NIDA NIH HHS; RF1 MH117069 United States MH NIMH NIH HHS; R01 ES025530 United States ES NIEHS NIH HHS; DP2 MH100012 United States MH NIMH NIH HHS; K99 NS114111 United States NS NINDS NIH HHS; R01 AI126880 United States AI NIAID NIH HHS; T32 AG049688 United States AG NIA NIH HHS; U54 HD083211 United States HD NICHD NIH HHS; R01 HL094400 United States HL NHLBI NIH HHS; R21 MH115353 United States MH NIMH NIH HHS; R01 GM051477 United States GM NIGMS NIH HHS; R01 GM116162 United States GM NIGMS NIH HHS; R01 AG045040 United States AG NIA NIH HHS; R29 GM051477 United States GM NIGMS NIH HHS; R01 MH118329 United States MH NIMH NIH HHS; T32 AI078892 United States AI NIAID NIH HHS; U01 AG058635 United States AG NIA NIH HHS; R01 NS091574 United States NS NINDS NIH HHS; R01 HD098363 United States HD NICHD NIH HHS; K99 DA042111 United States DA NIDA NIH HHS; T32 CA207021 United States CA NCI NIH HHS
    • Accession Number:
      0 (Antigens, CD)
      0 (Receptor, Adenosine A1)
      0 (Receptor, Muscarinic M3)
      415SHH325A (Adenosine Monophosphate)
      8L70Q75FXE (Adenosine Triphosphate)
      EC 3.1.3.5 (5'-Nucleotidase)
      EC 3.6.1.5 (Apyrase)
      EC 3.6.1.5 (CD39 antigen)
      K72T3FS567 (Adenosine)
      SY7Q814VUP (Calcium)
    • Publication Date:
      Date Created: 20201001 Date Completed: 20210114 Latest Revision: 20220716
    • Publication Date:
      20231215
    • Accession Number:
      PMC7577179
    • Accession Number:
      10.1038/s41586-020-2777-8
    • Accession Number:
      32999463