Evolutionary Dynamics of Transposable Elements Following a Shared Polyploidization Event in the Tribe Andropogoneae.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Oxford University Press Country of Publication: England NLM ID: 101566598 Publication Model: Electronic Cited Medium: Internet ISSN: 2160-1836 (Electronic) Linking ISSN: 21601836 NLM ISO Abbreviation: G3 (Bethesda) Subsets: MEDLINE
    • Publication Information:
      Publication: 2021- : [Oxford] : Oxford University Press
      Original Publication: Bethesda, MD : Genetics Society of America, 2011-
    • Subject Terms:
    • Abstract:
      Both polyploidization and transposable element (TE) activity are known to be major drivers of plant genome evolution. Here, we utilize the Zea-Tripsacum clade to investigate TE activity and accumulation after a shared polyploidization event. Comparisons of TE evolutionary dynamics in various Zea and Tripsacum species, in addition to two closely related diploid species, Urelytrum digitatum and Sorghum bicolor , revealed variation in repeat content among all taxa included in the study. The repeat composition of Urelytrum is more similar to that of Zea and Tripsacum compared to Sorghum , despite the similarity in genome size with the latter. Although LTR-retrotransposons were abundant in all species, we observed an expansion of the copia superfamily, specifically in Z. mays and T. dactyloides , species that have adapted to more temperate environments. Additional analyses of the genomic distribution of these retroelements provided evidence of biased insertions near genes involved in various biological processes including plant development, defense, and macromolecule biosynthesis. Specifically, copia insertions in Zea and T. dactyloides were significantly enriched near genes involved in abiotic stress response, suggesting independent evolution post Zea-Tripsacum divergence. The lack of copia insertions near the orthologous genes in S. bicolor suggests that duplicate gene copies generated during polyploidization may offer novel neutral sites for TEs to insert, thereby providing an avenue for subfunctionalization via TE insertional mutagenesis.
      (Copyright © 2020 Ramachandran et al.)
    • References:
      Cell. 2016 Jun 30;166(1):102-14. (PMID: 27293192)
      Mol Biol Evol. 2016 Aug;33(8):1937-56. (PMID: 27189548)
      Nucleic Acids Res. 2000 Sep 1;28(17):3250-9. (PMID: 10954592)
      Genome Biol Evol. 2015 Nov 24;7(12):3368-82. (PMID: 26608057)
      Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17835-40. (PMID: 19805056)
      Bioinformatics. 2003 Aug 12;19(12):1572-4. (PMID: 12912839)
      Plant J. 2015 May;82(4):621-31. (PMID: 25823965)
      Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86. (PMID: 22110026)
      Plant Cell. 2003 Aug;15(8):1771-80. (PMID: 12897251)
      Nature. 2011 Apr 7;472(7341):115-9. (PMID: 21399627)
      Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915-9. (PMID: 1438297)
      BMC Genomics. 2016 Mar 08;17:201. (PMID: 26955946)
      Science. 2008 Mar 14;319(5869):1527-30. (PMID: 18339939)
      Bioinformatics. 2009 Jul 15;25(14):1754-60. (PMID: 19451168)
      PLoS One. 2015 Nov 25;10(11):e0143424. (PMID: 26606051)
      Syst Biol. 2008 Oct;57(5):758-71. (PMID: 18853362)
      Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12404-10. (PMID: 15240870)
      Curr Biol. 2006 Oct 24;16(20):R872-3. (PMID: 17055967)
      Science. 2009 Nov 20;326(5956):1112-5. (PMID: 19965430)
      Sci Rep. 2017 Jan 10;7:40139. (PMID: 28071676)
      Curr Biol. 2006 Jul 11;16(13):1322-8. (PMID: 16824920)
      Nucleic Acids Res. 2015 Jan;43(Database issue):D222-6. (PMID: 25414356)
      Methods Mol Biol. 2014;1112:195-210. (PMID: 24478016)
      Bioinformatics. 2014 Aug 1;30(15):2114-20. (PMID: 24695404)
      Genetica. 1997;100(1-3):241-52. (PMID: 9440277)
      Bioinformatics. 2013 Mar 15;29(6):792-3. (PMID: 23376349)
      Mol Biol Evol. 2008 Jul;25(7):1307-20. (PMID: 18367465)
      New Phytol. 2013 Jan;197(2):431-40. (PMID: 23190182)
      Heredity (Edinb). 2013 Feb;110(2):194-204. (PMID: 23321774)
      New Phytol. 2015 Oct;208(2):596-607. (PMID: 26061193)
      New Phytol. 2014 May;202(3):975-85. (PMID: 24548250)
      Philos Trans R Soc Lond B Biol Sci. 2003 Jun 29;358(1434):1149-55. (PMID: 12831481)
      Genome Res. 2004 Oct;14(10A):1916-23. (PMID: 15466289)
      Plant Physiol. 2002 Jun;129(2):733-46. (PMID: 12068115)
      Proc Natl Acad Sci U S A. 2017 Dec 5;114(49):E10550-E10559. (PMID: 29158416)
      Plant J. 2013 Aug;75(4):699-709. (PMID: 23663083)
      Philos Trans R Soc Lond B Biol Sci. 2013 Aug 12;368(1626):20120507. (PMID: 23938756)
      PLoS Genet. 2015 Jan 08;11(1):e1004915. (PMID: 25569788)
      Bioinformatics. 2005 May 1;21(9):2104-5. (PMID: 15647292)
      Mol Genet Genomics. 2016 Oct;291(5):1871-83. (PMID: 27295958)
      Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6603-7. (PMID: 10823912)
      Plant J. 2018 Jan;93(2):338-354. (PMID: 29161754)
      PLoS Genet. 2014 Jan 30;10(1):e1004115. (PMID: 24497839)
      IEEE Trans Vis Comput Graph. 2014 Dec;20(12):1983-92. (PMID: 26356912)
      Am J Bot. 2016 Jul;103(7):1197-202. (PMID: 27440791)
      Nat Genet. 2012 Jun 03;44(7):803-7. (PMID: 22660545)
      Am J Bot. 2016 Jul;103(7):1146-66. (PMID: 27234228)
      Bioinformatics. 2012 Jun 15;28(12):1647-9. (PMID: 22543367)
      Plant Biol (Stuttg). 2014 Jul;16(4):825-35. (PMID: 24176077)
      Nature. 2009 Oct 22;461(7267):1130-4. (PMID: 19847266)
      Mol Biol Evol. 2015 Oct;32(10):2760-74. (PMID: 26174143)
      Bioinformatics. 2020 Apr 15;36(8):2628-2629. (PMID: 31882993)
      Plant Mol Biol. 2012 Nov;80(4-5):419-27. (PMID: 22933118)
      Genome Biol Evol. 2011;3:219-29. (PMID: 21296765)
      Genes Dev. 2016 Apr 15;30(8):909-17. (PMID: 27056670)
      Plant Cell. 2012 Mar;24(3):1242-55. (PMID: 22427337)
      Genome Biol. 2016 Oct 11;17(1):209. (PMID: 27729060)
      Nature. 2015 Sep 24;525(7570):533-7. (PMID: 26352475)
      Mol Genet Genomics. 2007 Dec;278(6):639-51. (PMID: 17786479)
      Nat Genet. 2011 Sep 25;43(11):1160-3. (PMID: 21946354)
      Plant J. 2014 Mar;77(6):852-62. (PMID: 24447172)
      Plant J. 2019 Sep;99(5):965-977. (PMID: 31069858)
      New Phytol. 2010 Apr;186(1):37-45. (PMID: 20002321)
      Bioinformatics. 2009 Aug 15;25(16):2078-9. (PMID: 19505943)
      Science. 1984 Nov 16;226(4676):792-801. (PMID: 15739260)
      Nucleic Acids Res. 2011 Jan;39(Database issue):D70-4. (PMID: 21036865)
      Theor Appl Genet. 2008 May;116(8):1079-94. (PMID: 18335200)
      Genome. 2000 Oct;43(5):874-80. (PMID: 11081978)
      Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9903-8. (PMID: 15161969)
      Bioinformatics. 2010 Mar 15;26(6):841-2. (PMID: 20110278)
      BMC Biol. 2014 May 19;12:36. (PMID: 24884953)
      Plant Physiol. 2017 Jan;173(1):65-78. (PMID: 27895205)
      Heredity (Edinb). 2010 Apr;104(4):341-50. (PMID: 20068588)
      Nucleic Acids Res. 2004 Mar 19;32(5):1792-7. (PMID: 15034147)
      PLoS One. 2011 Mar 10;6(3):e17855. (PMID: 21423772)
      Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7008-15. (PMID: 10860964)
      Mol Ecol. 2016 Jun;25(11):2337-60. (PMID: 26836441)
      Plant J. 2010 Feb;61(4):545-57. (PMID: 19947977)
    • Contributed Indexing:
      Keywords: LTR retrotransposon; Tripsacum dactyloides; adaptation; copia insertions; maize domestication
    • Accession Number:
      0 (DNA Transposable Elements)
      0 (Retroelements)
    • Publication Date:
      Date Created: 20200929 Date Completed: 20210527 Latest Revision: 20210527
    • Publication Date:
      20231215
    • Accession Number:
      PMC7718754
    • Accession Number:
      10.1534/g3.120.401596
    • Accession Number:
      32988994