Universal Cupping Degrees.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
Share on Goodreads
  • Additional Information
    • Abstract:
      Cupping nonzero computably enumerable (c.e. for short) degrees to 0′ in various structures has been one of the most important topics in the development of classical computability theory. An incomplete c.e. degree a is cuppable if there is an incomplete c.e. degree b such that a∪b=0′, and noncuppable if there is no such degree b. Sacks splitting theorem shows the existence of cuppable degrees. However, Yates(unpublished) and Cooper [3] proved that there are noncomputable noncuppable degrees. After that, Harrington and Shelah were able to employ the cupping/noncupping properties to show that the theory of the c.e. degrees under relation ≤ is undecidable. Cuppable and noncuppable degrees were further studied later. See Harrington [7], Miller [10], Fejer and Soare [6], Ambos-Spies, Lachlan and Soare [1], etc.. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Theory & Applications of Models of Computation is the property of Springer eBooks and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)