Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Developing Electron Microscopy Tools for Profiling Plasma Lipoproteins Using Methyl Cellulose Embedment, Machine Learning and Immunodetection of Apolipoprotein B and Apolipoprotein(a).
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: MDPI Country of Publication: Switzerland NLM ID: 101092791 Publication Model: Electronic Cited Medium: Internet ISSN: 1422-0067 (Electronic) Linking ISSN: 14220067 NLM ISO Abbreviation: Int J Mol Sci Subsets: MEDLINE
- Publication Information:
Original Publication: Basel, Switzerland : MDPI, [2000-
- Subject Terms:
- Abstract:
Plasma lipoproteins are important carriers of cholesterol and have been linked strongly to cardiovascular disease (CVD). Our study aimed to achieve fine-grained measurements of lipoprotein subpopulations such as low-density lipoprotein (LDL), lipoprotein(a) (Lp(a), or remnant lipoproteins (RLP) using electron microscopy combined with machine learning tools from microliter samples of human plasma. In the reported method, lipoproteins were absorbed onto electron microscopy (EM) support films from diluted plasma and embedded in thin films of methyl cellulose (MC) containing mixed metal stains, providing intense edge contrast. The results show that LPs have a continuous frequency distribution of sizes, extending from LDL (> 15 nm) to intermediate density lipoprotein (IDL) and very low-density lipoproteins (VLDL). Furthermore, mixed metal staining produces striking "positive" contrast of specific antibodies attached to lipoproteins providing quantitative data on apolipoprotein(a)-positive Lp(a) or apolipoprotein B (ApoB)-positive particles. To enable automatic particle characterization, we also demonstrated efficient segmentation of lipoprotein particles using deep learning software characterized by a Mask Region-based Convolutional Neural Networks (R-CNN) architecture with transfer learning. In future, EM and machine learning could be combined with microarray deposition and automated imaging for higher throughput quantitation of lipoproteins associated with CVD risk.
- References:
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149. (PMID: 27295650)
Micron. 2017 Aug;99:40-48. (PMID: 28419915)
Eur Heart J. 2010 Dec;31(23):2844-53. (PMID: 20965889)
J Extracell Vesicles. 2014 Sep 08;3:. (PMID: 25279113)
Cytometry A. 2019 Sep;95(9):952-965. (PMID: 31313519)
J Lipid Res. 1997 Apr;38(4):659-69. (PMID: 9144081)
J Clin Lipidol. 2019 May - Jun;13(3):374-392. (PMID: 31147269)
Oxid Med Cell Longev. 2017;2017:1273042. (PMID: 28572872)
Cell Mol Life Sci. 2018 Aug;75(15):2873-2886. (PMID: 29441425)
J Lipid Res. 2004 Jun;45(6):1069-76. (PMID: 14993238)
Chem Phys Lipids. 1994 Jan;67-68:81-9. (PMID: 8187247)
Anal Chem. 2016 Nov 1;88(21):10390-10394. (PMID: 27689436)
Lipids. 2005 May;40(5):495-500. (PMID: 16094859)
J Extracell Vesicles. 2018 Dec 28;8(1):1560809. (PMID: 30651940)
Lancet. 2018 Oct 13;392(10155):1311-1320. (PMID: 30293769)
Am Heart J. 2000 Feb;139(2 Pt 1):305-10. (PMID: 10650304)
J Lipid Res. 2015 Mar;56(3):737-46. (PMID: 25568061)
J Extracell Vesicles. 2015 Mar 26;4:27269. (PMID: 25819214)
Circulation. 2008 Jan 15;117(2):176-84. (PMID: 18086931)
J Microsc. 1984 May;134(Pt 2):127-36. (PMID: 6737468)
J Struct Biol. 2011 Nov;176(2):151-8. (PMID: 21798353)
Nat Methods. 2019 Dec;16(12):1233-1246. (PMID: 31133758)
J Lipid Res. 2015 Jun;56(6):1172-81. (PMID: 25910941)
J Lipid Res. 1995 Sep;36(9):2027-37. (PMID: 8558090)
J Nanopart Res. 2013;15:2101. (PMID: 24348090)
Medicine (Baltimore). 2017 Jul;96(27):e7040. (PMID: 28682864)
J Ultrastruct Res. 1984 Oct;89(1):65-78. (PMID: 6544882)
PLoS Comput Biol. 2016 Nov 4;12(11):e1005177. (PMID: 27814364)
J Clin Neurol. 2011 Dec;7(4):203-9. (PMID: 22259616)
Sci Rep. 2013;3:1089. (PMID: 23346347)
Immunology. 2012 Jun;136(2):192-7. (PMID: 22348503)
Cell. 2015 Mar 26;161(1):161-172. (PMID: 25815993)
Clin Chem. 2008 Aug;54(8):1307-16. (PMID: 18515257)
Clin Chem. 2004 Jul;50(7):1189-200. (PMID: 15107310)
Br J Clin Pharmacol. 1999 Aug;48(2):125-33. (PMID: 10417486)
Clin Chem. 1992 Sep;38(9):1632-8. (PMID: 1326420)
Lipids Health Dis. 2017 Jan 26;16(1):21. (PMID: 28125987)
Curr Opin Endocrinol Diabetes Obes. 2016 Apr;23(2):157-64. (PMID: 26825471)
Circulation. 2019 Aug 13;140(7):542-552. (PMID: 31216866)
Clin Biochem Rev. 2004 Feb;25(1):69-80. (PMID: 18516206)
J Lipid Res. 1996 Aug;37(8):1655-63. (PMID: 8864949)
J Lipid Res. 2016 Oct;57(10):1879-1888. (PMID: 27538822)
Front Physiol. 2012 Sep 07;3:354. (PMID: 22973237)
Front Pharmacol. 2015 Oct 05;6:218. (PMID: 26500551)
Biomark Med. 2009 Oct;3(5):439-41. (PMID: 20477514)
J Lipid Res. 2016 Apr;57(4):526-37. (PMID: 26637278)
Bio Protoc. 2017 Feb 20;7(4):. (PMID: 28603750)
Trends Cell Biol. 2012 May;22(5):229-30. (PMID: 22494708)
Sci Technol Adv Mater. 2018 Oct 18;19(1):732-745. (PMID: 30369998)
Cardiol Ther. 2019 Jun;8(1):91-102. (PMID: 30852766)
J Am Coll Cardiol. 2020 May 5;75(17):2122-2135. (PMID: 32354380)
Sci Rep. 2016 Apr 18;6:24316. (PMID: 27087061)
N Engl J Med. 2009 Dec 24;361(26):2518-28. (PMID: 20032323)
Nat Methods. 2019 Jan;16(1):67-70. (PMID: 30559429)
Sci Rep. 2016 May 04;6:25275. (PMID: 27141843)
Curr Opin Lipidol. 2017 Jun;28(3):261-266. (PMID: 28460374)
- Contributed Indexing:
Keywords: apolipoprotein B; apolipoprotein(a); cardiovascular disease; electron microscopy; lipoproteins; low-density lipoproteins; machine learning; nanoparticles
- Accession Number:
0 (Apolipoproteins B)
9004-67-5 (Methylcellulose)
EC 3.4.21.- (Apoprotein(a))
- Publication Date:
Date Created: 20200905 Date Completed: 20210325 Latest Revision: 20210325
- Publication Date:
20221213
- Accession Number:
PMC7503711
- Accession Number:
10.3390/ijms21176373
- Accession Number:
32887372
No Comments.