Acute rimonabant treatment promotes protein synthesis in C2C12 myotubes through a CB1-independent mechanism.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-Liss Country of Publication: United States NLM ID: 0050222 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-4652 (Electronic) Linking ISSN: 00219541 NLM ISO Abbreviation: J Cell Physiol Subsets: MEDLINE
    • Publication Information:
      Publication: New York, NY : Wiley-Liss
      Original Publication: Philadelphia, Wistar Institute of Anatomy and Biology.
    • Subject Terms:
    • Abstract:
      Sarcopenia is an age-related loss of muscle mass associated with changes in skeletal muscle protein homeostasis due to lipid accumulation and anabolic resistance; changes that are also commonly described in obesity. Activation of the endocannabinoid system is associated with the development of obesity and insulin resistance, and with the perturbed skeletal muscle development. Taken together this suggests that endocannabinoids could be regulators of skeletal muscle protein homeostasis. Here we report that rimonabant, an antagonist for the CB1 receptor, can prevent dexamethasone-induced C2C12 myotube atrophy without affecting the mRNA expression of atrogin-1/MAFbx (a marker of proteolysis), which suggests it is involved in the control of protein synthesis. Rimonabant alone stimulates protein synthesis in a time- and dose-dependent manner through mTOR- and intracellular calcium-dependent mechanisms. CB1 agonists are unable to modulate protein synthesis or prevent the effect of rimonabant. Using C2C12 cells stably expressing an shRNA directed against CB1, or HEK293 cells overexpressing HA-tagged CB1, we demonstrated that the effect of rimonabant is unaffected by CB1 expression level. In summary, rimonabant can stimulate protein synthesis in C2C12 myotubes through a CB1-independent mechanism. These results highlight the need to identify non-CB1 receptor(s) mediating the pro-anabolic effect of rimonabant as potential targets for the treatment of sarcopenia, and to design new side-effect-free molecules that consolidate the effect of rimonabant on skeletal muscle protein synthesis.
      (© 2020 Wiley Periodicals LLC.)
    • References:
      Anderson, S. R., Gilge, D. A., Steiber, A. L., & Previs, S. F. (2008). Diet-induced obesity alters protein synthesis: Tissue-specific effects in fasted versus fed mice. Metabolism: Clinical and Experimental, 57(3), 347-354. https://doi.org/10.1016/j.metabol.2007.10.009.
      Bermudez-Silva, F. J., Romero-Zerbo, S. Y., Haissaguerre, M., Ruz-Maldonado, I., Lhamyani, S., El Bekay, R., & Cota, D. (2016). The cannabinoid CB1 receptor and mTORC1 signalling pathways interact to modulate glucose homeostasis in mice. Disease Models & Mechanisms, 9(1), 51-61. https://doi.org/10.1242/dmm.020750.
      Bertero, E., & Maack, C. (2018). Calcium signaling and reactive oxygen species in mitochondria. Circulation Research, 122(10), 1460-1478. https://doi.org/10.1161/CIRCRESAHA.118.310082.
      Bluher, M., Engeli, S., Kloting, N., Berndt, J., Fasshauer, M., Batkai, S., & Stumvoll, M. (2006). Dysregulation of the peripheral and adipose tissue endocannabinoid system in human abdominal obesity. Diabetes, 55(11), 3053-3060. https://doi.org/10.2337/db06-0812.
      Bodine, S. C., Stitt, T. N., Gonzalez, M., Kline, W. O., Stover, G. L., Bauerlein, R., & Yancopoulos, G. D. (2001). Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nature Cell Biology, 3(11), 1014-1019. https://doi.org/10.1038/ncb1101-1014.
      Brostrom, M. A., & Brostrom, C. O. (2003). Calcium dynamics and endoplasmic reticular function in the regulation of protein synthesis: Implications for cell growth and adaptability. Cell Calcium, 34(4-5), 345-363. https://doi.org/10.1016/s0143-4160(03)00127-1.
      Combaret, L., Dardevet, D., Bechet, D., Taillandier, D., Mosoni, L., & Attaix, D. (2009). Skeletal muscle proteolysis in aging. Current Opinion in Clinical Nutrition and Metabolic Care, 12(1), 37-41. https://doi.org/10.1097/MCO.0b013e32831b9c31.
      Cruz-Jentoft, A. J., & Sayer, A. A. (2019). Sarcopenia. The Lancet, 393(10191), 2636-2646. https://doi.org/10.1016/S0140-6736(19)31138-9.
      Cuthbertson, D., Smith, K., Babraj, J., Leese, G., Waddell, T., Atherton, P., & Rennie, M. J. (2005). Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. The FASEB Journal, 19(3), 422-424. https://doi.org/10.1096/fj.04-2640fje.
      Daigle, T. L., Kearn, C. S., & Mackie, K. (2008). Rapid CB1 cannabinoid receptor desensitization defines the time course of ERK1/2 MAP kinase signaling. Neuropharmacology, 54(1), 36-44. https://doi.org/10.1016/j.neuropharm.2007.06.005.
      De Petrocellis, L., Bisogno, T., Maccarrone, M., Davis, J. B., Finazzi-Agro, A., & Di Marzo, V. (2001). The activity of anandamide at vanilloid VR1 receptors requires facilitated transport across the cell membrane and is limited by intracellular metabolism. Journal of Biological Chemistry, 276(16), 12856-12863. https://doi.org/10.1074/jbc.M008555200.
      D'Eon, T. M., Pierce, K. A., Roix, J. J., Tyler, A., Chen, H., & Teixeira, S. R. (2008). The role of adipocyte insulin resistance in the pathogenesis of obesity-related elevations in endocannabinoids. Diabetes, 57(5), 1262-1268. https://doi.org/10.2337/db07-1186.
      Deval, C., Capel, F., Laillet, B., Polge, C., Bechet, D., Taillandier, D., & Combaret, L. (2016). Docosahexaenoic acid-supplementation prior to fasting prevents muscle atrophy in mice. Journal of Cachexia, Sarcopenia and Muscle, 7(5), 587-603. https://doi.org/10.1002/jcsm.12103.
      Di Marzo, V. (2008). Endocannabinoids: Synthesis and degradation. Reviews of Physiology Biochemistry and Pharmacology, 160, 1-24. https://doi.org/10.1007/112_0505.
      Eckardt, K., Sell, H., Taube, A., Koenen, M., Platzbecker, B., Cramer, A., & Eckel, J. (2009). Cannabinoid type 1 receptors in human skeletal muscle cells participate in the negative crosstalk between fat and muscle. Diabetologia, 52(4), 664-674. https://doi.org/10.1007/s00125-008-1240-4.
      Egerman, M. A., & Glass, D. J. (2014). Signaling pathways controlling skeletal muscle mass. Critical Reviews in Biochemistry and Molecular Biology, 49(1), 59-68. https://doi.org/10.3109/10409238.2013.857291.
      Engeli, S., Bohnke, J., Feldpausch, M., Gorzelniak, K., Janke, J., Batkai, S., & Jordan, J. (2005). Activation of the peripheral endocannabinoid system in human obesity. Diabetes, 54(10), 2838-2843.
      Esposito, I., Proto, M. C., Gazzerro, P., Laezza, C., Miele, C., Alberobello, A. T., & Bifulco, M. (2008). The cannabinoid CB1 receptor antagonist rimonabant stimulates 2-deoxyglucose uptake in skeletal muscle cells by regulating the expression of phosphatidylinositol-3-kinase. Molecular Pharmacology, 74(6), 1678-1686. https://doi.org/10.1124/mol.108.049205.
      Flamment, M., Gueguen, N., Wetterwald, C., Simard, G., Malthiery, Y., & Ducluzeau, P. H. (2009). Effects of the cannabinoid CB1 antagonist rimonabant on hepatic mitochondrial function in rats fed a high-fat diet. American Journal of Physiology, Endocrinology and Metabolism, 297(5), E1162-E1170. https://doi.org/10.1152/ajpendo.00169.2009.
      Gatta-Cherifi, B., & Cota, D. (2016). New insights on the role of the endocannabinoid system in the regulation of energy balance. International Journal of Obesity (London), 40(2), 210-219. https://doi.org/10.1038/ijo.2015.179.
      Gehlert, S., Bloch, W., & Suhr, F. (2015). Ca2+-dependent regulations and signaling in skeletal muscle: From electro-mechanical coupling to adaptation. International Journal of Molecular Sciences, 16(1), 1066-1095. https://doi.org/10.3390/ijms16011066.
      Gomes, M. D., Lecker, S. H., Jagoe, R. T., Navon, A., & Goldberg, A. L. (2001). Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proceedings of the National Academy of Sciences of the United States of America, 98(25), 14440-14445. https://doi.org/10.1073/pnas.251541198.
      Goodman, C. A., Mabrey, D. M., Frey, J. W., Miu, M. H., Schmidt, E. K., Pierre, P., & Hornberger, T. A. (2011). Novel insights into the regulation of skeletal muscle protein synthesis as revealed by a new nonradioactive in vivo technique. The FASEB Journal, 25(3), 1028-1039. https://doi.org/10.1096/fj.10-168799.
      Guillet, C., & Boirie, Y. (2005). Insulin resistance: A contributing factor to age-related muscle mass loss? Diabetes & Metabolism, 31(Suppl. 2), 5S20-5S26. https://doi.org/10.1016/S1262-3636(05)73648-X.
      Guillet, C., Masgrau, A., Walrand, S., & Boirie, Y. (2012). Impaired protein metabolism: Interlinks between obesity, insulin resistance and inflammation. Obesity Reviews: An Official Journal of the International Association for the Study of Obesity, 13(Spec No 2), 51-57. https://doi.org/10.1111/j.1467-789X.2012.01037.x.
      Henstridge, C. M., Balenga, N. A., Schroder, R., Kargl, J. K., Platzer, W., Martini, L., & Irving, A. J. (2010). GPR55 ligands promote receptor coupling to multiple signalling pathways. British Journal of Pharmacology, 160(3), 604-614. https://doi.org/10.1111/j.1476-5381.2009.00625.x.
      Howlett, A. C., Blume, L. C., & Dalton, G. D. (2010). CB(1) cannabinoid receptors and their associated proteins. Current Medicinal Chemistry, 17(14), 1382-1393. https://doi.org/10.2174/092986710790980023.
      Iannotti, F. A., Pagano, E., Guardiola, O., Adinolfi, S., Saccone, V., Consalvi, S., & Di Marzo, V. (2018). Genetic and pharmacological regulation of the endocannabinoid CB1 receptor in Duchenne muscular dystrophy. Nature Communications, 9(1), 3950. https://doi.org/10.1038/s41467-018-06267-1.
      Iannotti, F. A., Silvestri, C., Mazzarella, E., Martella, A., Calvigioni, D., Piscitelli, F., & Di Marzo, V. (2014). The endocannabinoid 2-AG controls skeletal muscle cell differentiation via CB1 receptor-dependent inhibition of Kv7 channels. Proceedings of the National Academy of Sciences of the United States of America, 111(24), E2472-E2481. https://doi.org/10.1073/pnas.1406728111.
      Ito, N., Ruegg, U. T., Kudo, A., Miyagoe-Suzuki, Y., & Takeda, S. (2013). Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nature Medicine (New York, NY, United States), 19(1), 101-106. https://doi.org/10.1038/nm.3019.
      Jackson, K. C., Wohlers, L. M., Lovering, R. M., Schuh, R. A., Maher, A. C., Bonen, A., & Spangenburg, E. E. (2013). Ectopic lipid deposition and the metabolic profile of skeletal muscle in ovariectomized mice. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 304(3), R206-217. https://doi.org/10.1152/ajpregu.00428.2012.
      Jarai, Z., Wagner, J. A., Varga, K., Lake, K. D., Compton, D. R., Martin, B. R., & Kunos, G. (1999). Cannabinoid-induced mesenteric vasodilation through an endothelial site distinct from CB1 or CB2 receptors. Proceedings of the National Academy of Sciences of the United States of America, 96(24), 14136-14141. https://doi.org/10.1073/pnas.96.24.14136.
      Kapur, A., Zhao, P., Sharir, H., Bai, Y., Caron, M. G., Barak, L. S., & Abood, M. E. (2009). Atypical responsiveness of the orphan receptor GPR55 to cannabinoid ligands. Journal of Biological Chemistry, 284(43), 29817-29827. https://doi.org/10.1074/jbc.M109.050187.
      Katsanos, C. S., Kobayashi, H., Sheffield-Moore, M., Aarsland, A., & Wolfe, R. R. (2005). Aging is associated with diminished accretion of muscle proteins after the ingestion of a small bolus of essential amino acids. American Journal of Clinical Nutrition, 82(5), 1065-1073.
      Koopman, R., Ly, C. H., & Ryall, J. G. (2014). A metabolic link to skeletal muscle wasting and regeneration. Frontiers in Physiology, 5, 32. https://doi.org/10.3389/fphys.2014.00032.
      Lauckner, J. E., Jensen, J. B., Chen, H. Y., Lu, H. C., Hille, B., & Mackie, K. (2008). GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proceedings of the National Academy of Sciences of the United States of America, 105(7), 2699-2704. https://doi.org/10.1073/pnas.0711278105.
      Lee, C. G., Boyko, E. J., Strotmeyer, E. S., Lewis, C. E., Cawthon, P. M. Hoffman, A. R., … the Osteoporotic Fractures in Men Study Research Group (2011). Association between insulin resistance and lean mass loss and fat mass gain in older men without diabetes mellitus. Journal of the American Geriatrics Society, 59(7), 1217-1224. https://doi.org/10.1111/j.1532-5415.2011.03472.x.
      Li, R. J., Xu, J., Fu, C., Zhang, J., Zheng, Y. G., Jia, H., & Liu, J. O. (2016). Regulation of mTORC1 by lysosomal calcium and calmodulin. eLife, 5, e19360. https://doi.org/10.7554/eLife.19360.
      Lindborg, K. A., Teachey, M. K., Jacob, S., & Henriksen, E. J. (2010). Effects of in vitro antagonism of endocannabinoid-1 receptors on the glucose transport system in normal and insulin-resistant rat skeletal muscle. Diabetes, Obesity & Metabolism, 12(8), 722-730. https://doi.org/10.1111/j.1463-1326.2010.01227.x.
      Lipina, C., Stretton, C., Hastings, S., Hundal, J. S., Mackie, K., Irving, A. J., & Hundal, H. S. (2010). Regulation of MAP kinase-directed mitogenic and protein kinase B-mediated signaling by cannabinoid receptor type 1 in skeletal muscle cells. Diabetes, 59(2), 375-385. https://doi.org/10.2337/db09-0979.
      Lipina, C., Vaanholt, L. M., Davidova, A., Mitchell, S. E., Storey-Gordon, E., Hambly, C., & Hundal, H. S. (2016). CB1 receptor blockade counters age-induced insulin resistance and metabolic dysfunction. Aging Cell, 15(2), 325-335. https://doi.org/10.1111/acel.12438.
      Lipina, C., Walsh, S. K., Mitchell, S. E., Speakman, J. R., Wainwright, C. L., & Hundal, H. S. (2019). GPR55 deficiency is associated with increased adiposity and impaired insulin signaling in peripheral metabolic tissues. The FASEB Journal, 33(1), 1299-1312. https://doi.org/10.1096/fj.201800171R.
      Liu, B., Song, S., Jones, P. M., & Persaud, S. J. (2015). GPR55: From orphan to metabolic regulator? Pharmacology and Therapeutics, 145, 35-42. https://doi.org/10.1016/j.pharmthera.2014.06.007.
      Liu, Y. L., Connoley, I. P., Wilson, C. A., & Stock, M. J. (2005). Effects of the cannabinoid CB1 receptor antagonist SR141716 on oxygen consumption and soleus muscle glucose uptake in Lep(ob)/Lep(ob) mice. International Journal of Obesity (London), 29(2), 183-187. https://doi.org/10.1038/sj.ijo.0802847.
      Luo, Z., Ma, L., Zhao, Z., He, H., Yang, D., Feng, X., & Zhu, Z. (2012). TRPV1 activation improves exercise endurance and energy metabolism through PGC-1α upregulation in mice. Cell Research, 22(3), 551-564. https://doi.org/10.1038/cr.2011.205.
      Maccarrone, M., Bab, I., Biro, T., Cabral, G. A., Dey, S. K., Di Marzo, V., & Zimmer, A. (2015). Endocannabinoid signaling at the periphery: 50 years after THC. Trends in Pharmacological Sciences, 36(5), 277-296. https://doi.org/10.1016/j.tips.2015.02.008.
      MacLennan, S. J., Reynen, P. H., Kwan, J., & Bonhaus, D. W. (1998). Evidence for inverse agonism of SR141716A at human recombinant cannabinoid CB1 and CB2 receptors. British Journal of Pharmacology, 124(4), 619-622. https://doi.org/10.1038/sj.bjp.0701915.
      Masgrau, A., Mishellany-Dutour, A., Murakami, H., Beaufrere, A. M., Walrand, S., Giraudet, C., & Boirie, Y. (2012). Time-course changes of muscle protein synthesis associated with obesity-induced lipotoxicity. Journal of Physiology, 590(Pt. 20), 5199-5210. https://doi.org/10.1113/jphysiol.2012.238576.
      Matias, I., Gonthier, M. P., Orlando, P., Martiadis, V., De Petrocellis, L., Cervino, C., & Di Marzo, V. (2006). Regulation, function, and dysregulation of endocannabinoids in models of adipose and beta-pancreatic cells and in obesity and hyperglycemia. Journal of Clinical Endocrinology and Metabolism, 91(8), 3171-3180. https://doi.org/10.1210/jc.2005-2679.
      Mazier, W., Saucisse, N., Gatta-Cherifi, B., & Cota, D. (2015). The endocannabinoid system: Pivotal orchestrator of obesity and metabolic disease. Trends in Endocrinology and Metabolism, 26(10), 524-537. https://doi.org/10.1016/j.tem.2015.07.007.
      Meadows, A., Lee, J. H., Wu, C. S., Wei, Q., Pradhan, G., Yafi, M., & Sun, Y. (2016). Deletion of G-protein-coupled receptor 55 promotes obesity by reducing physical activity. International Journal of Obesity (London), 40(3), 417-424. https://doi.org/10.1038/ijo.2015.209.
      Miura, Y., Nakazawa, T., & Yagasaki, K. (2006). Possible involvement of calcium signaling pathways in L-leucine-stimulated protein synthesis in L6 myotubes. Bioscience, Biotechnology, and Biochemistry, 70(6), 1533-1536. https://doi.org/10.1271/bbb.60081.
      New, D. C., & Wong, Y. H. (2003). BML-190 and AM251 act as inverse agonists at the human cannabinoid CB2 receptor: Signalling via cAMP and inositol phosphates. FEBS Letters, 536(1-3), 157-160. https://doi.org/10.1016/s0014-5793(03)00048-6.
      O'Neill, E. D., Wilding, J. P., Kahn, C. R., Van Remmen, H., McArdle, A., Jackson, M. J., & Close, G. L. (2010). Absence of insulin signalling in skeletal muscle is associated with reduced muscle mass and function: Evidence for decreased protein synthesis and not increased degradation. Age (Dordr), 32(2), 209-222. https://doi.org/10.1007/s11357-009-9125-0.
      Pertwee, R. G. (2005). Pharmacological actions of cannabinoids, Handbook of Experimental Pharmacology (168, pp. 1-51). https://doi.org/10.1007/3-540-26573-2_1.
      Raffaello, A., Mammucari, C., Gherardi, G., & Rizzuto, R. (2016). Calcium at the center of cell signaling: Interplay between endoplasmic reticulum, mitochondria, and lysosomes. Trends in Biochemical Sciences, 41(12), 1035-1049. https://doi.org/10.1016/j.tibs.2016.09.001.
      Rasmussen, B. B., Fujita, S., Wolfe, R. R., Mittendorfer, B., Roy, M., Rowe, V. L., & Volpi, E. (2006). Insulin resistance of muscle protein metabolism in aging. The FASEB Journal, 20(6), 768-769. https://doi.org/10.1096/fj.05-4607fje.
      Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A. L., Nada, S., & Sabatini, D. M. (2010). Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell, 141(2), 290-303. https://doi.org/10.1016/j.cell.2010.02.024.
      Saxton, R. A., & Sabatini, D. M. (2017). mTOR signaling in growth, metabolism, and disease. Cell, 168(6), 960-976. https://doi.org/10.1016/j.cell.2017.02.004.
      Semsarian, C., Wu, M. J., Ju, Y. K., Marciniec, T., Yeoh, T., Allen, D. G., & Graham, R. M. (1999). Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway. Nature, 400(6744), 576-581. https://doi.org/10.1038/23054.
      Short, K. R., Bigelow, M. L., Kahl, J., Singh, R., Coenen-Schimke, J., Raghavakaimal, S., & Nair, K. S. (2005). Decline in skeletal muscle mitochondrial function with aging in humans. Proceedings of the National Academy of Sciences of the United States of America, 102(15), 5618-5623. https://doi.org/10.1073/pnas.0501559102.
      Srikanthan, P., & Karlamangla, A. S. (2011). Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from the third National Health and Nutrition Examination Survey. Journal of Clinical Endocrinology and Metabolism, 96(9), 2898-2903. https://doi.org/10.1210/jc.2011-0435.
      Tardif, N., Salles, J., Guillet, C., Tordjman, J., Reggio, S., Landrier, J. F., & Walrand, S. (2014). Muscle ectopic fat deposition contributes to anabolic resistance in obese sarcopenic old rats through eIF2α activation. Aging Cell, 13(6), 1001-1011. https://doi.org/10.1111/acel.12263.
      Tedesco, L., Valerio, A., Cervino, C., Cardile, A., Pagano, C., Vettor, R., & Nisoli, E. (2008). Cannabinoid type 1 receptor blockade promotes mitochondrial biogenesis through endothelial nitric oxide synthase expression in white adipocytes. Diabetes, 57(8), 2028-2036. https://doi.org/10.2337/db07-1623.
      Tu, M. K., Levin, J. B., Hamilton, A. M., & Borodinsky, L. N. (2016). Calcium signaling in skeletal muscle development, maintenance and regeneration. Cell Calcium, 59(2-3), 91-97. https://doi.org/10.1016/j.ceca.2016.02.005.
      Volpi, E., Mittendorfer, B., Rasmussen, B. B., & Wolfe, R. R. (2000). The response of muscle protein anabolism to combined hyperaminoacidemia and glucose-induced hyperinsulinemia is impaired in the elderly. Journal of Clinical Endocrinology and Metabolism, 85(12), 4481-4490. https://doi.org/10.1210/jcem.85.12.7021.
      Wolfe, R. R. (2006). The underappreciated role of muscle in health and disease. American Journal of Clinical Nutrition, 84(3), 475-482. https://doi.org/10.1093/ajcn/84.3.475.
      Zou, S., & Kumar, U. (2018). Cannabinoid receptors and the endocannabinoid system: Signaling and function in the central nervous system. International Journal of Molecular Sciences, 19(3), 833. https://doi.org/10.3390/ijms19030833.
    • Contributed Indexing:
      Keywords: CB1 receptor; endocannabinoids; protein anabolism; sarcopenia; skeletal muscle
    • Accession Number:
      0 (CNR1 protein, mouse)
      0 (Cannabinoid Receptor Antagonists)
      0 (Receptor, Cannabinoid, CB1)
      7S5I7G3JQL (Dexamethasone)
      EC 2.7.1.1 (mTOR protein, mouse)
      EC 2.7.11.1 (TOR Serine-Threonine Kinases)
      RML78EN3XE (Rimonabant)
      SY7Q814VUP (Calcium)
    • Publication Date:
      Date Created: 20200905 Date Completed: 20210920 Latest Revision: 20211204
    • Publication Date:
      20240829
    • Accession Number:
      10.1002/jcp.30034
    • Accession Number:
      32885412