TNFAIP8 promotes AML chemoresistance by activating ERK signaling pathway through interaction with Rac1.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: BioMed Central Country of Publication: England NLM ID: 8308647 Publication Model: Electronic Cited Medium: Internet ISSN: 1756-9966 (Electronic) Linking ISSN: 03929078 NLM ISO Abbreviation: J Exp Clin Cancer Res Subsets: MEDLINE
    • Publication Information:
      Publication: 2009- : London : BioMed Central
      Original Publication: [Roma] : APSIT,
    • Subject Terms:
    • Abstract:
      Background: Chemoresistance is emerging as a major barrier to successful treatment in acute myeloid leukemia (AML), and evasion of apoptosis is among the fundamental underlying mechanisms. Therefore, unraveling molecular networks that drive this process constitutes an urgent unmet need. Herein, we aim to characterize the role and molecular mechanism of the tumor necrosis factor ɑ-induced protein 8 (TNFAIP8), a novel anti-apoptotic molecule, in AML chemoresistance.
      Methods: The expression levels of TNFAIP8 were assessed in AML patients and cell lines by RT-qPCR and western blots. The transcriptional regulation of TNFAIP8 was analyzed with luciferase reporter assay and ChIP followed by RT-qPCR. Functional experiments were conducted to evaluate the effects of TNFAIP8 on apoptosis, drug sensitivity and proliferation of AML cells. Potential effects of TNFAIP8 on the activation of extracellular signal-regulated kinase (ERK) pathway were detected by western blots. CoIP and P21-activated kinase (PAK) pull-down assay were performed to ascertain the upstream target. The overall effects of TNFAIP8 on AML were examined in murine models.
      Results: Upregulated TNFAIP8 expression was first confirmed in human AML patients and cell lines. E74 like ETS transcription factor 1 (ELF1) was then identified to contribute to its aberrant expression. Through manipulating TNFAIP8 expression, we described its role in protecting AML cells from apoptosis induced by chemotherapeutic agents and in promoting drug resistance. Notably, the leukemia-promoting action of TNFAIP8 was mediated by sustaining activity of the ERK signaling pathway, through an interaction with Rac family small GTPase 1 (Rac1). In addition, in vivo experiments confirmed that TNFAIP8 suppression lowered leukemia infiltration and improved survival.
      Conclusion: Our data provide a molecular basis for the role of TNFAIP8 in chemoresistance and progression of AML and highlight the unique function of TNFAIP8 as an attractive therapeutic target.
    • References:
      Biochem Biophys Res Commun. 2009 Sep 4;386(4):769-74. (PMID: 19563775)
      Oral Oncol. 1997 May;33(3):197-203. (PMID: 9307729)
      Blood. 2016 Jan 7;127(1):42-52. (PMID: 26660432)
      Bioessays. 1995 May;17(5):395-404. (PMID: 7786285)
      Cancer Med. 2020 Mar;9(6):2160-2170. (PMID: 31968402)
      Cell Death Differ. 2018 Jan;25(1):65-80. (PMID: 29149100)
      Leukemia. 2020 Feb;34(2):625-629. (PMID: 31455850)
      Exp Hematol. 2010 Sep;38(9):798-8, 808.e1-2. (PMID: 20600580)
      J Cell Physiol. 2011 Sep;226(9):2267-78. (PMID: 21660950)
      Nucleic Acids Res. 2017 Jan 4;45(D1):D43-D50. (PMID: 27924033)
      Cancer Discov. 2018 Dec;8(12):1582-1597. (PMID: 30254093)
      Cell Commun Signal. 2018 Jul 31;16(1):43. (PMID: 30064446)
      Oncogene. 2010 Jun 10;29(23):3362-73. (PMID: 20383193)
      Sci Rep. 2016 Nov 02;6:36382. (PMID: 27805061)
      Annu Rev Med. 2016;67:59-72. (PMID: 26473413)
      Oncol Lett. 2019 May;17(5):4667-4674. (PMID: 30944654)
      Cancer Res. 2012 Jun 15;72(12):3069-79. (PMID: 22525702)
      Cancers (Basel). 2019 Oct 26;11(11):. (PMID: 31717784)
      Cancer Discov. 2019 Jul;9(7):910-925. (PMID: 31048320)
      Cancer Cell. 2017 Dec 11;32(6):748-760.e6. (PMID: 29232553)
      Nucleic Acids Res. 2017 Jul 3;45(W1):W98-W102. (PMID: 28407145)
      Blood. 2015 Jul 16;126(3):363-72. (PMID: 26045609)
      Biochim Biophys Acta Rev Cancer. 2019 Dec;1872(2):188310. (PMID: 31442474)
      Blood. 2014 Jul 17;124(3):426-36. (PMID: 24894773)
      Leukemia. 2003 Sep;17(9):1783-93. (PMID: 12970778)
      Tumour Biol. 2016 Aug;37(8):10923-34. (PMID: 26886285)
      Nat Rev Cancer. 2016 Feb;16(2):99-109. (PMID: 26822577)
      Blood. 2010 Jan 21;115(3):453-74. (PMID: 19880497)
      Leukemia. 2015 Nov;29(11):2248-56. (PMID: 26050649)
      Cancer Res. 2004 Sep 15;64(18):6461-8. (PMID: 15374955)
      Oncotarget. 2017 Feb 28;8(9):15689-15703. (PMID: 28152516)
      Histopathology. 2014 Oct;65(4):517-26. (PMID: 24621012)
      Curr Med Chem. 2007;14(5):601-23. (PMID: 17346150)
      Cancer Manag Res. 2019 Jun 06;11:5243-5254. (PMID: 31289447)
      Cancer Res. 1986 Aug;46(8):4053-7. (PMID: 2425939)
      J Biol Chem. 2014 Feb 14;289(7):4219-32. (PMID: 24371145)
      Mol Oncol. 2013 Oct;7(5):907-16. (PMID: 23726395)
      Haematologica. 2006 Jun;91(6):757-64. (PMID: 16769577)
      Cell Signal. 2018 Apr;44:127-137. (PMID: 29329780)
      Zhongguo Yao Li Xue Bao. 1995 Jul;16(4):333-7. (PMID: 7668104)
      Cancer Cell. 2019 Oct 14;36(4):369-384.e13. (PMID: 31543463)
      Int J Cancer. 1976 May 15;17(5):565-77. (PMID: 178611)
      Blood. 2019 Jan 3;133(1):7-17. (PMID: 30361262)
      N Engl J Med. 2015 Sep 17;373(12):1136-52. (PMID: 26376137)
      Int J Mol Sci. 2019 May 21;20(10):. (PMID: 31117237)
      Hum Pathol. 2017 Apr;62:40-49. (PMID: 28087477)
      Leukemia. 2005 Sep;19(9):1543-9. (PMID: 16001087)
      Cell Death Differ. 2017 Jan;24(1):181-191. (PMID: 27834950)
      Blood. 2005 Aug 15;106(4):1154-63. (PMID: 15870183)
      Leukemia. 1995 Jan;9(1):131-8. (PMID: 7845007)
      Cell Death Differ. 2018 Jan;25(1):27-36. (PMID: 29099483)
      Blood. 2006 Apr 15;107(8):3153-60. (PMID: 16352813)
      Stem Cells. 2016 Jul;34(7):1730-41. (PMID: 26946078)
      Cancer Discov. 2020 Feb;10(2):214-231. (PMID: 31771968)
      J Biol Chem. 2000 Jan 28;275(4):2973-8. (PMID: 10644768)
      J Biol Chem. 2007 Jan 5;282(1):14-28. (PMID: 17088251)
    • Grant Information:
      2018CXGC1215 grants from Major Science and Technology Innovation Project of Shandong Province; 81770159 National Natural Science Foundation of China; 81500130 National Natural Science Foundation of China; 81600124 National Natural Science Foundation of China; 2018GSF118014 Key Research and Development Program of Shandong Province; 2017G006015 Key Research and Development Program of Shandong Province; 2018JC003 The Fundamental Research Funds of Shandong University; 2017JC015 The Fundamental Research Funds of Shandong University; 81700143 National Natural Science Foundation of China; 81873425 National Natural Science Foundation of China
    • Contributed Indexing:
      Keywords: AML; Apoptosis; Chemoresistance; ERK; Rac1; TNFAIP8
    • Accession Number:
      0 (Antineoplastic Agents)
      0 (Apoptosis Regulatory Proteins)
      0 (Biomarkers, Tumor)
      0 (RAC1 protein, human)
      0 (TNFAIP8 protein, human)
      EC 2.7.11.24 (MAPK1 protein, human)
      EC 2.7.11.24 (MAPK3 protein, human)
      EC 2.7.11.24 (Mitogen-Activated Protein Kinase 1)
      EC 2.7.11.24 (Mitogen-Activated Protein Kinase 3)
      EC 3.6.5.2 (rac1 GTP-Binding Protein)
    • Publication Date:
      Date Created: 20200816 Date Completed: 20210427 Latest Revision: 20210427
    • Publication Date:
      20221213
    • Accession Number:
      PMC7427779
    • Accession Number:
      10.1186/s13046-020-01658-z
    • Accession Number:
      32795319