Revising the mechanism of p75NTR activation: intrinsically monomeric state of death domains invokes the "helper" hypothesis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • Subject Terms:
    • Abstract:
      The neurotrophin receptor p75NTR plays crucial roles in neuron development and regulates important neuronal processes like degeneration, apoptosis and cell survival. At the same time the detailed mechanism of signal transduction is unclear. One of the main hypotheses known as the snail-tong mechanism assumes that in the inactive state, the death domains interact with each other and in response to ligand binding there is a conformational change leading to their exposure. Here, we show that neither rat nor human p75NTR death domains homodimerize in solution. Moreover, there is no interaction between the death domains in a more native context: the dimerization of transmembrane domains in liposomes and the presence of activating mutation in extracellular juxtamembrane region do not lead to intracellular domain interaction. These findings suggest that the activation mechanism of p75NTR should be revised. Thus, we propose a novel model of p75NTR functioning based on interaction with "helper" protein.
    • References:
      Bibel, M. & Barde, Y.-A. Neurotrophins: Key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev.14, 2919–2937 (2000). (PMID: 11114882)
      Chao, M. V. Neurotrophins and their receptors: A convergence point for many signalling pathways. Nat. Rev. Neurosci.4, 299–309 (2003). (PMID: 12671646)
      Ibáñez, C. F. & Simi, A. p75 neurotrophin receptor signaling in nervous system injury and degeneration: Paradox and opportunity. Trends Neurosci.35, 431–440 (2012). (PMID: 22503537)
      Lee, R., Kermani, P., Teng, K. K. & Hempstead, B. L. Regulation of cell survival by secreted proneurotrophins. Science294, 1945–1948 (2001). (PMID: 11729324)
      Vicario, A., Kisiswa, L., Tann, J. Y., Kelly, C. E. & Ibáñez, C. F. Neuron-type-specific signaling by the p75NTR death receptor is regulated by differential proteolytic cleavage. J. Cell. Sci.128, 1507–1517 (2015). (PMID: 25720379)
      Yoon, S. O., Casaccia-Bonnefil, P., Carter, B. & Chao, M. V. Competitive signaling between TrkA and p75 nerve growth factor receptors determines cell survival. J. Neurosci.18, 3273–3281 (1998). (PMID: 95472366792655)
      Meier, S. et al. The p75 neurotrophin receptor is required for the survival of neuronal progenitors and normal formation of the basal forebrain, striatum, thalamus and neocortex. Development146, 20 (2019).
      Roux, P. P. & Barker, P. A. Neurotrophin signaling through the p75 neurotrophin receptor. Prog. Neurobiol.67, 203–233 (2002). (PMID: 12169297)
      Dechant, G. & Barde, Y.-A. The neurotrophin receptor p75(NTR): Novel functions and implications for diseases of the nervous system. Nat. Neurosci.5, 1131–1136 (2002). (PMID: 12404007)
      Kraemer, B. R., Yoon, S. O. & Carter, B. D. The biological functions and signaling mechanisms of the p75 neurotrophin receptor. In Neurotrophic Factors (eds Lewin, G. R. & Carter, B. D.) 121–164 (Springer, Berlin, 2014).
      Vilar, M. Chapter four–structural characterization of the p75 neurotrophin receptor: A stranger in the TNFR superfamily. In Vitamins and Hormones, Vol. 104 (ed. Litwack, G.) 57–87 (Academic Press, New York, 2017).
      Tanaka, K., Kelly, C. E., Goh, K. Y., Lim, K. B. & Ibáñez, C. F. Death domain signaling by disulfide-linked dimers of the p75 neurotrophin receptor mediates neuronal death in the CNS. J. Neurosci.36, 5587–5595 (2016). (PMID: 271943376601771)
      Vilar, M. et al. Activation of the p75 neurotrophin receptor through conformational rearrangement of disulphide-linked receptor dimers. Neuron62, 72–83 (2009). (PMID: 193760682810632)
      Lin, Z. et al. Structural basis of death domain signaling in the p75 neurotrophin receptor. Elife4, e11692 (2015). (PMID: 266461814739766)
      Qu, Q. et al. Structural characterization of the self-association of the death domain of p75NTR. PLoS One8, e57839 (2013). (PMID: 234721093589453)
      Vilar, M. et al. Heterodimerization of p45–p75 modulates p75 signaling: Structural basis and mechanism of action. PLoS Biol.12, e1001918 (2014). (PMID: 250936804122344)
      Anastasia, A., Barker, P. A., Chao, M. V. & Hempstead, B. L. Detection of p75NTR trimers: Implications for receptor stoichiometry and activation. J. Neurosci.35, 11911–11920 (2015). (PMID: 263117734549402)
      Liepinsh, E., Ilag, L. L., Otting, G. & Ibáñez, C. F. NMR structure of the death domain of the p75 neurotrophin receptor. EMBO J.16, 4999–5005 (1997). (PMID: 93056411170134)
      Mineev, K. S., Nadezhdin, K. D., Goncharuk, S. A. & Arseniev, A. S. Façade detergents as bicelle rim-forming agents for solution NMR spectroscopy. Nanotechnol. Rev.6, 93–103 (2017).
      Mineev, K. S., Goncharuk, S. A., Kuzmichev, P. K., Vilar, M. & Arseniev, A. S. NMR dynamics of transmembrane and intracellular domains of p75NTR in lipid-protein nanodiscs. Biophys. J.109, 772–782 (2015). (PMID: 262876294547337)
      Vilar, M. et al. Ligand-independent signaling by disulfide-crosslinked dimers of the p75 neurotrophin receptor. J. Cell. Sci.122, 3351–3357 (2009). (PMID: 197066762736866)
      Tyn, M. T. & Gusek, T. W. Prediction of diffusion coefficients of proteins. Biotechnol. Bioeng.35, 327–338 (1990). (PMID: 18592527)
      Garcı́a de la Torre, J. S., Huertas, M. L. & Carrasco, B. HYDRONMR: Prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations. J. Magn. Reson.147, 138–146 (2000). (PMID: 11042057)
      Rabanal, F., DeGrado, W. F. & Dutton, P. L. Use of 2,2′-dithiobis(5-nitropyridine) for the heterodimerization of cysteine containing peptides. Introduction of the 5-nitro-2-pyridinesulfenyl group. Tetrahedron Lett.37, 1347–1350 (1996).
      Tyler-Cross, R. & Schirch, V. Effects of amino acid sequence, buffers, and ionic strength on the rate and mechanism of deamidation of asparagine residues in small peptides. J. Biol. Chem.266, 22549–22556 (1991). (PMID: 1939272)
      Khursigara, G. et al. A prosurvival function for the p75 receptor death domain mediated via the caspase recruitment domain receptor-interacting protein 2. J. Neurosci.21, 5854–5863 (2001). (PMID: 114876086763175)
      Charalampopoulos, I. et al. Genetic dissection of neurotrophin signaling through the p75 neurotrophin receptor. Cell Rep.2, 1563–1570 (2012). (PMID: 23260665)
      Shen, Y. & Bax, A. Protein structural information derived from NMR chemical shift with the neural network program TALOS-N. Methods Mol. Biol.1260, 17–32 (2015). (PMID: 255023734319698)
      Chill, J. H., Louis, J. M., Baber, J. L. & Bax, A. Measurement of 15N relaxation in the detergent-solubilized tetrameric KcsA potassium channel. J. Biomol. NMR36, 123–136 (2006). (PMID: 17013683)
      Lindner, H. & Helliger, W. Age-dependent deamidation of asparagine residues in proteins. Exp. Gerontol.36, 1551–1563 (2001). (PMID: 11525877)
      Robinson, A. B. & Robinson, L. R. Distribution of glutamine and asparagine residues and their near neighbors in peptides and proteins. PNAS88, 8880–8884 (1991). (PMID: 1924347)
      Robinson, N. E. & Robinson, A. B. Deamidation of human proteins. PNAS98, 12409–12413 (2001). (PMID: 11606750)
      Robinson, N. E. & Robinson, A. B. Molecular clocks. Proc. Natl. Acad. Sci. USA98, 944–949 (2001). (PMID: 11158575)
      Bandi, S., Singh, S. M., Shah, D. D., Upadhyay, V. & Mallela, K. M. G. 2D NMR analysis of the effect of asparagine deamidation versus methionine oxidation on the structure, stability, aggregation, and function of a therapeutic protein. Mol. Pharm. https://doi.org/10.1021/acs.molpharmaceut.9b00719 (2019). (PMID: 10.1021/acs.molpharmaceut.9b0071931483994)
      Dunkelberger, E. B. et al. Deamidation accelerates amyloid formation and alters amylin fiber structure. J. Am. Chem. Soc.134, 12658–12667 (2012). (PMID: 227345833410046)
      Hao, P., Adav, S. S., Gallart-Palau, X. & Sze, S. K. Recent advances in mass spectrometric analysis of protein deamidation. Mass Spectrom. Rev.36, 677–692 (2017). (PMID: 26763661)
      Li, M. et al. Aberrant post-translational modifications compromise human myosin motor function in old age. Aging Cell14, 228–235 (2015). (PMID: 256455864364835)
      Solstad, T. & Flatmark, T. Microheterogeneity of recombinant human phenylalanine hydroxylase as a result of nonenzymatic deamidations of labile amide containing amino acids. Effects on catalytic and stability properties. Eur. J. Biochem.267, 6302–6310 (2000). (PMID: 11012685)
      Mishra, P. K. K. & Mahawar, M. PIMT-mediated protein repair: Mechanism and implications. Biochem. Moscow84, 453–463 (2019).
      Marchetti, L. et al. Fast-diffusing p75NTR monomers support apoptosis and growth cone collapse by neurotrophin ligands. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1902790116 (2019). (PMID: 10.1073/pnas.190279011631548413)
      Sykes, A. M. et al. The effects of transmembrane sequence and dimerization on cleavage of the p75 neurotrophin receptor by γ-secretase. J. Biol. Chem.287, 43810–43824 (2012). (PMID: 231051123527965)
      Bilderback, T. R., Grigsby, R. J. & Dobrowsky, R. T. Association of p75 NTR with caveolin and localization of neurotrophin-induced sphingomyelin hydrolysis to caveolae. J. Biol. Chem.272, 10922–10927 (1997). (PMID: 9099750)
      Chang, M.-S., Arevalo, J. C. & Chao, M. V. Ternary complex with Trk, p75, and an ankyrin-rich membrane spanning protein. J. Neurosci. Res.78, 186–192 (2004). (PMID: 15378608)
      Deinhardt, K. et al. Neuronal growth cone retraction relies upon proneurotrophin receptor signaling through Rac. Sci. Signal4, ra82 (2011). (PMID: 221557863360552)
      Meabon, J. S. et al. LINGO-1 protein interacts with the p75 neurotrophin receptor in intracellular membrane compartments. J. Biol. Chem.290, 9511–9520 (2015). (PMID: 256666234392256)
      Mi, S. et al. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat. Neurosci.7, 221–228 (2004). (PMID: 14966521)
      Nykjaer, A. et al. Sortilin is essential for proNGF-induced neuronal cell death. Nature427, 843–848 (2004). (PMID: 14985763)
      Wang, K. C., Kim, J. A., Sivasankaran, R., Segal, R. & He, Z. p75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature420, 74–78 (2002). (PMID: 12422217)
      Khursigara, G., Orlinick, J. R. & Chao, M. V. Association of the p75 neurotrophin receptor with TRAF6. J. Biol. Chem.274, 2597–2600 (1999). (PMID: 9915784)
      Shonukan, T., Bagayogo, I., McCrea, P. D., Chao, M. & Hempstead, B. Neurotrophin-induced melanoma cell migration is mediated through the actin-bundling protein fascin. Oncogene22, 3616–3623 (2003). (PMID: 12789270)
      Ye, X. et al. TRAF family proteins interact with the common neurotrophin receptor and modulate apoptosis induction. J. Biol. Chem.274, 30202–30208 (1999). (PMID: 10514511)
      Coulson, E. J. et al. The role of neurotransmission and the Chopper domain in p75 neurotrophin receptor death signaling. Prog. Brain Res.146, 41–62 (2004). (PMID: 14699955)
      Sachs, B. D. et al. p75 neurotrophin receptor regulates tissue fibrosis through inhibition of plasminogen activation via a PDE4/cAMP/PKA pathway. J. Cell. Biol.177, 1119–1132 (2007). (PMID: 175768032064370)
      Prats, R. & de Pedro, M. A. Normal growth and division of Escherichia coli with a reduced amount of murein. J. Bacteriol.171, 3740–3745 (1989). (PMID: 2500418210119)
      Kucerka, N., Kiselev, M. A. & Balgavý, P. Determination of bilayer thickness and lipid surface area in unilamellar dimyristoylphosphatidylcholine vesicles from small-angle neutron scattering curves: A comparison of evaluation methods. Eur. Biophys. J.33, 328–334 (2004). (PMID: 12955364)
      Lescop, E., Schanda, P. & Brutscher, B. A set of BEST triple-resonance experiments for time-optimized protein resonance assignment. J. Magn. Reson.187, 163–169 (2007). (PMID: 17468025)
      Favier, A. & Brutscher, B. Recovering lost magnetization: Polarization enhancement in biomolecular NMR. J. Biomol. NMR49, 9–15 (2011). (PMID: 21190063)
      Mayzel, M., Kazimierczuk, K. & Orekhov, V. Y. The causality principle in the reconstruction of sparse NMR spectra. Chem. Commun. (Camb.)50, 8947–8950 (2014).
      Zheng, G. & Price, W. S. Simultaneous convection compensation and solvent suppression in biomolecular NMR diffusion experiments. J. Biomol. NMR45, 295–299 (2009). (PMID: 19697137)
    • Accession Number:
      0 (Ligands)
      0 (Liposomes)
      0 (NGFR protein, human)
      0 (Nerve Tissue Proteins)
      0 (Receptors, Growth Factor)
      0 (Receptors, Nerve Growth Factor)
      136958-07-1 (Ngfr protein, rat)
    • Publication Date:
      Date Created: 20200815 Date Completed: 20210111 Latest Revision: 20210813
    • Publication Date:
      20221213
    • Accession Number:
      PMC7427093
    • Accession Number:
      10.1038/s41598-020-70721-8
    • Accession Number:
      32792564