Complement evasion strategies of Borrelia burgdorferi sensu lato.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: John Wiley & Sons Ltd Country of Publication: England NLM ID: 0155157 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1873-3468 (Electronic) Linking ISSN: 00145793 NLM ISO Abbreviation: FEBS Lett Subsets: MEDLINE
    • Publication Information:
      Publication: Jan. 2016- : West Sussex : John Wiley & Sons Ltd.
      Original Publication: Amsterdam, North-Holland on behalf of the Federation of European Biochemical Societies.
    • Subject Terms:
    • Abstract:
      Borreliosis (Lyme disease) is a spirochetal disease caused by the species complex of Borrelia burgdorferi transmitted by Ixodes spp. ticks. Recorded to be the most common tick-borne disease in the world, the last two decades have seen an increase in disease incidence and distribution, exceeding 360 000 cases in Europe alone. If untreated, infection may cause skin symptoms, arthritis, and neurological or cardiac complications. Borrelia spirochetes have developed strategies to evade the mammalian host immune system. These include the complement system, which is an important first-line defense mechanism against invading microbes. To evade the complement, spirochetes bind soluble complement regulators factor H (FH), factor H-like protein, and C4bp to their outer surfaces. B. burgdorferi spirochetes can inhibit the classical pathway of complement by the outer surface protein (Osp) BBK32, which blocks the activation of the C1 complex, composed of C1q, C1r, and C1s. The FH-binding proteins of borreliae include Osps OspE, CspA, and CspZ. Following repeated infections, antibodies against these proteins develop and may provide functional immunity against borreliosis. This review discusses critical immune evasion strategies, focusing on complement evasion by borreliae.
      (© 2020 Federation of European Biochemical Societies.)
    • References:
      Sykes RA and Makiello P (2016) An estimate of Lyme borreliosis incidence in Western Europe. J Public Health 39, 74-81.
      Hubalek Z (2009) Epidemiology of Lyme borreliosis. Curr Probl Dermatol 37, 31-50.
      Radolf J, Caimano M, Stevenson B and Hu LT (2012) Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 10, 87-99.
      Fingerle V, Schulte-Spechtel UC, Ruzic-Sabljic E, Leonhard S, Hofmann H, Weber K, Pfister K, Strle F and Wilske B (2008) Epidemiological aspects and molecular characterization of Borrelia burgdorferi s.l. from southern Germany with special respect to the new species Borrelia spielmanii sp. nov. Int J Med Microbiol 298, 279-290.
      Maraspin V, Ruzic-Sabljic E and Strle F (2006) Lyme Borreliosis and Borrelia spielmanii. Emerg Infect Dis 12, 1177.
      Stanek G and Strle F (2003) Lyme borreliosis. Lancet 362, 1639-1647.
      Stanek G, Wormser GP, Gray J and Strle F (2012) Lyme borreliosis. Lancet 379, 461-473.
      Piesman J and Gern L (2004) Lyme borreliosis in Europe and North America. Parasitology 129, S191-S220.
      Gern L (2009) Life cycle of Borrelia burgdorferi sensu lato and transmission to humans. Curr Probl Dermatol 37, 18-30.
      Phelan JP, Kern A, Ramsey ME, Lundt ME, Sharma B, Lin T, Gao L, Norris SJ, Hyde JA, Skare JT et al. (2019) Genome-wide screen identifies novel genes required for Borrelia burgdorferi survival in its Ixodes tick vector. PLoS Pathog 15, 1-27.
      Hovius JWR, van Dam AP and Fikrig E (2007) Tick-host-pathogen interactions in Lyme borreliosis. Trends Parasitol 23, 434-438.
      Cabello FC, Godfrey HP and Newman SA (2007) Hidden in plain sight: Borrelia burgdorferi and the extracellular matrix. Trends Microbiol 15, 350-354.
      Pal U and Fikrig E (2003) Adaptation of Borrelia burgdorferi in the vector and vertebrate host. Microbes Infect 5, 659-666.
      Yang XF, Pal U, Alani SM, Fikrig E and Norgard MV (2004) Essential role for OspA/B in the life cycle of the Lyme disease spirochete. J Exp Med 199, 641-648.
      Neelakanta G, Li X, Pal U, Liu X, Beck DS, DePonte K, Fish D, Kantor FS and Fikrig E (2007) Outer surface protein B is critical for Borrelia burgdorferi adherence and survival within Ixodes ticks. PLoS Pathog 3, e33.
      Hefty PS, Jolliff SE, Caimano MJ, Wikel SK, Radolf JD and Akins DR (2001) Regulation of OspE-related, OspF-related, and Elp lipoproteins of Borrelia burgdorferi strain 297 by mammalian host-specific signals. Infect Immun 69, 3618-3627.
      Pérez D, Kneubühler Y, Rais O, Jouda F and Gern L (2011) Borrelia afzelii ospC genotype diversity in Ixodes ricinus questing ticks and ticks from rodents in two Lyme borreliosis endemic areas: contribution of co-feeding ticks. Ticks Tick Borne Dis 2, 137-142.
      Strle F (1996) Epidemiological study of a cohort of adult patients with Erythema migrans registered in Slovenia in 1993. Eur J Epidemiol 12, 503-507.
      Stanek G and Kahl O (1999) Chemoprophylaxis for Lyme borreliosis? Zentralbl Bakteriol 289, 655-665.
      Rawal N and Pangburn MK (2001) Structure/function of C5 convertases of complement. Int Immunopharmacol 1, 415-422.
      Dudkina NV, Spicer BA, Reboul CF, Conroy PJ, Lukoyanova N, Elmlund H, Law RHP, Ekkel SM, Kondos SC, Goode RJA et al. (2016) Structure of the poly-C9 component of the complement membrane attack complex. Nat Commun 7, 10588.
      Davies A, Simmons DL, Hale G, Harrison RA, Tighe H, Lachmann PJ and Waldmann H (1989) CD59, an LY-6-like protein expressed in human lymphoid cells, regulates the action of the complement membrane attack complex on homologous cells. J Exp Med 170, 637-654.
      Pausa M, Pellis V, Cinco M, Giulianini PG, Presani G, Perticarari S, Murgia R and Tedesco F (2003) Serum-resistant strains of Borrelia burgdorferi evade complement-mediated killing by expressing a CD59-like complement inhibitory molecule. J Immunol 170, 3214-3222.
      Goicoechea De Jorge E, Caesar JJE, Malik TH, Patel M, Colledge M, Johnson S, Hakobyan S, Morgan BP, Harris CL, Pickering MC et al. (2013) Dimerization of complement factor H-related proteins modulates complement activation in vivo. Proc Natl Acad Sci USA 110, 4685-4690.
      Medjeral-Thomas N and Pickering MC (2016) The complement factor H-related proteins. Immunol Rev 274, 191-201.
      Józsi M, Strobel S, Dahse HM, Liu WS, Hoyer PF, Oppermann M, Skerka C and Zipfel PF (2007) Anti-factor H autoantibodies block C-terminal recognition function of factor H in hemolytic uremic syndrome. Blood 110, 1516-1518.
      Jokiranta TS, Hellwage J, Koistinen V, Zipfel PF and Meri S (2000) Each of the three binding sites on complement factor H interacts with a distinct site on C3b. J Biol Chem 275, 27657-27662.
      Ngampasutadol J, Ram S, Gulati S, Agarwal S, Li C, Visintin A, Monks B, Madico G and Rice PA (2008) Human factor H interacts selectively with Neisseria gonorrhoeae and results in species-specific complement evasion. J Immunol 180, 3426-3435.
      Zipfel PF, Jokiranta TS, Hellwage J, Koistinen V and Meri S (1999) The factor H protein family. Immunopharmacology 42, 53-60.
      Barbourt AG and Hayes SF (1986) Biology of Borrelia species. Microbiol Rev 50, 381-400.
      Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W and Whitman WB (2010) Bergey’s Manual of Systemic Bacteriology. Vol. 4, pp. 471-566. Springer, New York, NY.
      Cox DL, Akins DR, Bourell KW, Lahdenne P, Norgard MV and Radolf JD (1996) Limited surface exposure of Borrelia burgdorferi outer surface lipoproteins. Proc Natl Acad Sci USA 93, 7973-7978.
      Hefty PS, Jolliff SE, Caimano MJ, Wikel SK and Akins DR (2002) Changes in temporal and spatial patterns of outer surface lipoprotein expression generate population heterogeneity and antigenic diversity in the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun 70, 3468-3478.
      Kung F, Anguita J and Pal U (2013) Borrelia burgdorferi and tick proteins supporting pathogen persistence in the vector. Future Microbiol 8, 41-56.
      LaRocca TJ, Crowley JT, Cusack BJ, Pathak P, Benach J, London E, Garcia-Monco JC and Benach JL (2010) Cholesterol lipids of Borrelia burgdorferi form lipid rafts and are required for the bactericidal activity of a complement-independent antibody. Cell Host Microbe 8, 331-342.
      Xu H, Raddi G, Liu J, Charon NW and Li C (2011) Chemoreceptors and flagellar motors are subterminally located in close proximity at the two cell poles in spirochetes. J Bacteriol 193, 2652-2656.
      Bakker RG, Li C, Miller MR, Cunningham C and Charon NW (2007) Identification of specific chemoattractants and genetic complementation of a Borrelia burgdorferi chemotaxis mutant: flow cytometry-based capillary tube chemotaxis assay. Appl Environ Microbiol 73, 1180-1188.
      Shi W, Yang Z, Geng Y, Wolinsky LE and Lovett MA (1998) Chemotaxis in Borrelia burgdorferi. J Bacteriol 180, 231-235.
      Sultan SZ, Manne A, Stewart PE, Bestor A, Rosa PA, Charon NW and Motaleb MA (2013) Motility is crucial for the infectious life cycle of Borrelia burgdorferi. Infect Immun 81, 2012-2021.
      Comstock LE and Thomas DD (1989) Penetration of endothelial cell monolayers by Borrelia burgdorferi. Infect Immun 57, 1626-1628.
      Stanek G and Strle F (2018) Lyme borreliosis-from tick bite to diagnosis and treatment. FEMS Microbiol Rev 42, 233-258.
      Strle F, Ruzic-Sabljic E, Cimperman J, Lotric-Furlan S and Maraspin V (2006) Comparison of findings for patients with Borrelia garinii and Borrelia afzelii isolated from cerebrospinal fluid. Clin Infect Dis 43, 704-710.
      Steere AC, Bartenhagen NH, Craft JE, Hutchinson GJ, Newman JH, Rahn DW, Sigal LH, Spieler PN, Stenn KS and Malawista SE (1983) The early clinical manifestations of Lyme disease. Ann Intern Med 99, 76.
      Eriksson P, Schröder M, Niiranen K, Nevanlinna A, Panelius J and Ranki A (2013) The many faces of solitary and multiple erythema migrans. Acta Derm Venereol 93, 693-700.
      Hofmann H, Fingerle V, Hunfeld KP, Huppertz HI, Krause A, Rauer S, Ruf B, Aberer E, Bechter K, Freitag MH et al. (2017) Cutaneous Lyme borreliosis: guideline of the German dermatology society. GMS Ger Med Sci 15, 1-31.
      Maraspin V, Cimperman J, Lotrič-Furlan S, Ružić-Sabljić E, Jurca T, Picken RN and Strle F (2002) Solitary borrelial lymphocytoma in adult patients. Wien Klin Wochenschr 114, 515-523.
      Berglund J, Eitrem R, Ornstein K, Lindberg A, Ringnér A, Elmrud H, Carlsson M, Runehagen A, Svanborg C and Norrby R (1995) An epidemiologic study of Lyme disease in southern Sweden. N Engl J Med 333, 1319-1327.
      Asbrink E (1993) Acrodermatitis chronica atrophicans. Clin Dermatol 11, 369-375.
      Ogrinc K, Wormser GP, Visintainer P, Maraspin V, Lotrič-Furlan S, Cimperman J, Ružić-Sabljić E, Bogovič P, Rojko T, Stupica D et al. (2017) Pathogenetic implications of the age at time of diagnosis and skin location for acrodermatitis chronica atrophicans. Ticks Tick Borne Dis 8, 266-269.
      Lenormand C, Jaulhac B, De Martino S, Barthel C and Lipsker D (2009) Species of Borrelia burgdorferi complex that cause borrelial lymphocytoma in France. Br J Dermatol 161, 174-176.
      Picken RN, Strle F, Picken MM, Ruzic-Sabljic E, Maraspin V, Lotric-Furlan S and Cimperman J (1998) Identification of three species of Borrelia burgdorferi sensu lato (B. burgdorferi sensu stricto, B. garinii, and B. afzelii) among isolates from acrodermatitis chronica atrophicans lesions. J Invest Dermatol 110, 211-214.
      Schuijt TJ, Coumou J, Narasimhan S, Dai J, Deponte K, Wouters D, Brouwer M, Oei A, Roelofs JJTH, Van Dam AP et al. (2011) A tick mannose-binding lectin inhibitor interferes with the vertebrate complement cascade to enhance transmission of the Lyme disease agent. Cell Host Microbe 10, 136-146.
      Kurtenbach K, De Michelis S, Etti S, Schäfer SM, Sewell HS, Brade V and Kraiczy P (2002) Host association of Borrelia burgdorferi sensu lato - The key role of host complement. Trends Microbiol 10, 74-79.
      Van Dam AP, Oei A, Jaspars R, Fijen C, Wilske B, Spanjaard L and Dankert J (1997) Complement-mediated serum sensitivity among spirochetes that cause Lyme disease. Infect Immun 65, 1228-1236.
      de Taeye SW, Kreuk L, van Dam AP, Hovius JW and Schuijt TJ (2013) Complement evasion by Borrelia burgdorferi: it takes three to tango. Trends Parasitol 29, 119-128.
      Alitalo A, Meri T, Rämö L, Jokiranta TS, Heikkilä T, Seppälä IJT, Oksi J, Viljanen M and Meri S (2001) Complement evasion by Borrelia burgdorferi: serum-resistant strains promote C3b inactivation. Infect Immun 69, 3685-3691.
      Breitner-Ruddock S, Schulze RWJ and Brade V (1997) Heterogeneity in the complement-dependent bacteriolysis within the species of Borrelia burgdorferi. Med Microbiol Immunol 185, 253-260.
      Hellwage J, Meri T, Heikkilä T, Alitalo A, Panelius J, Lahdenne P, Seppälä IJT and Meri S (2001) The complement regulator factor H binds to the surface protein OspE of Borrelia burgdorferi. J Biol Chem 276, 8427-8435.
      Kraiczy P, Skerka C, Kirschfink M, Zipfel PF and Brade V (2001) Mechanism of complement resistance of pathogenic Borrelia burgdorferi isolates. Int Immunopharmacol 1, 393-401.
      Alitalo A, Meri T, Lankinen H, Seppälä I, Lahdenne P, Hefty PS, Akins D and Meri S (2002) Complement inhibitor factor H binding to Lyme disease spirochetes is mediated by inducible expression of multiple plasmid-encoded outer surface protein E paralogs. J Immunol 169, 3847-3853.
      Kraiczy P, Hellwage J, Skerka C, Kirschfink M, Brade V, Zipfel PF and Wallich R (2003) Immune evasion of Borrelia burgdorferi: Mapping of a complement inhibitor factor H-binding site of BbCRASP-3, a novel member of the Erp protein family. Eur J Immunol 33, 697-707.
      Stevenson B, Schwan TG and Rosa PA (1995) Temperature-related differential expression of antigens in the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun 63, 4535-4539.
      Akins DR, Bourell KW, Caimano MJ, Norgard MV and Radolf JD (1998) A new animal model for studying Lyme disease spirochetes in a mammalian host-adapted state. J Clin Invest 101, 2240-2250.
      Kraiczy P and Stevenson B (2013) Complement regulator-acquiring surface proteins of Borrelia burgdorferi: structure, function and regulation of gene expression. Ticks Tick Borne Dis 4, 26-34.
      Alitalo A, Meri T, Comstedt P, Jeffery L, Tornberg J, Strandin T, Lankinen H, Bergström S, Cinco M, Vuppala SR et al. (2005) Expression of complement factor H binding immunoevasion proteins in Borrelia garinii isolated from patients with neuroborreliosis. Eur J Immunol 35, 3043-3053.
      Panelius J, Meri T, Seppälä I, Eholuoto M, Alitalo A and Meri S (2008) Outer surface protein E antibody response and its effect on complement factor H binding to OspE in Lyme borreliosis. Microbes Infect 10, 135-142.
      Panelius J, Ranki A, Meri T, Seppälä I and Meri S (2010) Expression and sequence diversity of the complement regulating outer surface protein E in borrelia afzelii vs. Borrelia garinii in patients with erythema migrans or neuroborreliosis. Microb Pathog 49, 363-368.
      Bhattacharjee A, Oeemig JS, Kolodziejczyk R, Meri T, Kajander T, Lehtinen MJ, Iwai H, Jokiranta TS and Goldman A (2013) Structural basis for complement evasion by Lyme disease pathogen Borrelia burgdorferi. J Biol Chem 288, 18685-18695.
      Meri T, Amdahl H, Lehtinen MJ, Hyvärinen S, McDowell JV, Bhattacharjee A, Meri S, Marconi R, Goldman A and Jokiranta TS (2013) Microbes bind complement inhibitor factor H via a common site. PLoS Pathog 9, e1003308.
      Kraiczy P, Hellwage J, Skerka C, Becker H, Kirschfink M, Simon MM, Brade V, Zipfel PF and Wallich R (2004) Complement resistance of Borrelia burgdorferi correlates with the expression of BbCRASP-1, a novel linear plasmid-encoded surface protein that interacts with human factor H and FHL-1 and is unrelated to Erp proteins. J Biol Chem 279, 2421-2429.
      Wallich R, Pattathu J, Kitiratschky V, Brenner C, Zipfel PF, Brade V, Simon MM and Kraiczy P (2005) Identification and functional characterization of complement regulator-acquiring surface protein 1 of the Lyme disease spirochetes Borrelia afzelii and Borrelia garinii. Infect Immun 73, 2351-2359.
      Brooks CS, Vuppala SR, Jett AM, Alitalo A, Meri S and Akins DR (2005) Complement regulator-acquiring surface protein 1 imparts resistance to human serum in Borrelia burgdorferi. J Immunol 4, 26-34.
      Cordes FS, Roversi P, Kraiczy P, Simon MM, Brade V, Jahraus O, Wallis R, Skerka C, Zipfel PF, Wallich R et al. (2005) A novel fold for the factor H-binding protein BbCRASP-1 of Borrelia burgdorferi. Nat Struct Mol Biol 12, 276-277.
      Hartmann K, Corvey C, Skerka C, Kirschfink M, Karas M, Brade V, Miller JC, Stevenson B, Wallich R, Zipfel PF et al. (2006) Functional characterization of BbCRASP-2, a distinct outer membrane protein of Borrelia burgdorferi that binds host complement regulators factor H and FHL-1. Mol Microbiol 61, 1220-1236.
      Bykowski T, Woodman ME, Cooley AE, Brissette CA, Brade V, Wallich R, Kraiczy P and Stevenson B (2007) Coordinated expression of Borrelia burgdorferi complement regulator-acquiring surface proteins during the Lyme disease spirochete’s mammal-tick infection cycle. Infect Immun 75, 4227-4236.
      Marcinkiewicz AL, Lieknina I, Yang X, Lederman PL, Hart TM, Yates J, Chen W-H, Bottazzi ME, Mantis NJ, Kraiczy P et al. (2020) The Factor H-binding site of CspZ as a protective target against multi-strain, tick-transmitted Lyme disease. Infect Immun 88, e00956-19.
      Meri S, Jördens M and Jarva H (2008) Microbial complement inhibitors as vaccines. Vaccine 26, 113-117.
      Gorringe AR and Pajon R (2012) Bexsero: a multicomponent vaccine for prevention of meningococcal disease. Hum Vaccines Immunother 8, 174-183.
      Hart T, Nguyen NTT, Nowak NA, Zhang F, Linhardt RJ, Diuk-Wasser M, Ram S, Kraiczy P and Lin YP (2018) Polymorphic factor H-binding activity of CspA protects Lyme borreliae from the host complement in feeding ticks to facilitate tick-to-host transmission. PLoS Pathog 14, e1007106.
      Pietikäinen J, Meri T, Blom AM and Meri S (2010) Binding of the complement inhibitor C4b-binding protein to Lyme disease borreliae. Mol Immunol 47, 1299-1305.
      Meri T, Cutler SJ, Blom AM, Meri S and Jokiranta TS (2006) Relapsing fever spirochetes Borrelia recurrentis and B. duttonii acquire complement regulators C4b-binding protein and factor H. Infect Immun 74, 4157-4163.
      Garcia BL, Zhi H, Wager B, Höök M and Skare JT (2016) Borrelia burgdorferi BBK32 inhibits the classical pathway by blocking activation of the C1 complement complex. PLoS Pathog 12, e1005404.
      Fikrig E, Barthold SW, Sun W, Feng W, Telford SR and Flavell RA (1997) Borrelia burgdorferi P35 and P37 proteins, expressed in vivo, elicit protective immunity. Immunity 6, 531-539.
      Moriarty TJ, Shi M, Lin Y-P, Ebady R, Zhou H, Odisho T, Hardy P-O, Salman-Dilgimen A, Wu J, Weening EH et al. (2012) Vascular binding of a pathogen under shear force through mechanistically distinct sequential interactions with host macromolecules. Mol Microbiol 86, 1116-1131.
      Xie J, Zhi H, Garrigues RJ, Keightley A, Garcia BL and Skare JT (2019) Structural determination of the complement inhibitory domain of Borrelia burgdorferi BBK32 provides insight into classical pathway complement evasion by Lyme disease spirochetes. PLoS Pathog 15, 1-29.
      Grimm D, Tilly K, Byram R, Stewart PE, Krum JG, Bueschel DM, Schwan TG, Policastro PF, Elias AF and Rosa PA (2004) Outer-surface protein C of the Lyme disease spirochete: a protein induced in ticks for infection of mammals. Proc Natl Acad Sci USA 101, 3142-3147.
      Lin T, Oliver JHJ and Gao L (2002) Genetic diversity of the outer surface protein C gene of southern Borrelia isolates and its possible epidemiological, clinical, and pathogenetic implications. J Clin Microbiol 40, 2572-2583.
      Earnhart CG, Buckles EL, Dumler JS and Marconi RT (2005) Demonstration of OspC type diversity in invasive human Lyme disease isolates and identification of previously uncharacterized epitopes that define the specificity of the OspC murine antibody response. Infect Immun 73, 7869-7877.
      Caine JA, Lin Y-P, Kessler JR, Sato H, Leong JM and Coburn J (2017) Borrelia burgdorferi outer surface protein C (OspC) binds complement component C4b and confers bloodstream survival. Cell Microbiol 19, 12.
      Hammerschmidt C, Klevenhaus Y, Koenigs A, Hallström T, Fingerle V, Skerka C, Pos KM, Zipfel PF, Wallich R and Kraiczy P (2016) BGA66 and BGA71 facilitate complement resistance of Borrelia bavariensis by inhibiting assembly of the membrane attack complex. Mol Microbiol 99, 407-424.
      Comstedt P, Schüler W, Meinke A and Lundberg U (2017) The novel Lyme borreliosis vaccine VLA15 shows broad protection against Borrelia species expressing six different OspA serotypes. PLoS One 12, e0184357.
    • Contributed Indexing:
      Keywords: BBK32; Borrelia; CspA; CspZ; OspE; complement system; factor H; immune evasion
    • Accession Number:
      0 (Antibodies, Bacterial)
      0 (Bacterial Proteins)
      9007-36-7 (Complement System Proteins)
    • Publication Date:
      Date Created: 20200805 Date Completed: 20210511 Latest Revision: 20210511
    • Publication Date:
      20221213
    • Accession Number:
      10.1002/1873-3468.13894
    • Accession Number:
      32748966