A novel antiviral formulation inhibits a range of enveloped viruses.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Microbiology Society Country of Publication: England NLM ID: 0077340 Publication Model: Print Cited Medium: Internet ISSN: 1465-2099 (Electronic) Linking ISSN: 00221317 NLM ISO Abbreviation: J Gen Virol Subsets: MEDLINE
    • Publication Information:
      Publication: 2015- : London : Microbiology Society
      Original Publication: London, Cambridge Univ. Press for the Society for General Microbiology.
    • Subject Terms:
    • Abstract:
      Some free fatty acids derived from milk and vegetable oils are known to have potent antiviral and antibacterial properties. However, therapeutic applications of short- to medium-chain fatty acids are limited by physical characteristics such as immiscibility in aqueous solutions. We evaluated a novel proprietary formulation based on an emulsion of short-chain caprylic acid, ViroSAL, for its ability to inhibit a range of viral infections in vitro and in vivo. In vitro, ViroSAL inhibited the enveloped viruses Epstein-Barr, measles, herpes simplex, Zika and orf parapoxvirus, together with Ebola, Lassa, vesicular stomatitis and severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) pseudoviruses, in a concentration- and time-dependent manner. Evaluation of the components of ViroSAL revealed that caprylic acid was the main antiviral component; however, the ViroSAL formulation significantly inhibited viral entry compared with caprylic acid alone. In vivo , ViroSAL significantly inhibited Zika and Semliki Forest virus replication in mice following the inoculation of these viruses into mosquito bite sites. In agreement with studies investigating other free fatty acids, ViroSAL had no effect on norovirus, a non-enveloped virus, indicating that its mechanism of action may be surfactant disruption of the viral envelope. We have identified a novel antiviral formulation that is of great interest for the prevention and/or treatment of a broad range of enveloped viruses, particularly those of the skin and mucosal surfaces.
    • Comments:
      Comment on: Chem Phys Lipids. 2007 Nov;150(1):1-11. (PMID: 17686469)
    • Grant Information:
      MR/P021735/1 United Kingdom MRC_ Medical Research Council; BBS/E/I/00007039 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; BBS/E/I/00007038 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; MR/N023781/1 United Kingdom MRC_ Medical Research Council; BBS/E/I/00007034 United Kingdom BB_ Biotechnology and Biological Sciences Research Council
    • Contributed Indexing:
      Keywords: Zika; antiviral; coronavirus; enveloped virus; herpes simplex; measles; pseudovirus
    • Accession Number:
      0 (Antiviral Agents)
      0 (Lipids)
    • Publication Date:
      Date Created: 20200722 Date Completed: 20201027 Latest Revision: 20230310
    • Publication Date:
      20240628
    • Accession Number:
      10.1099/jgv.0.001472
    • Accession Number:
      32692647