Menu
×
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. – 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. – 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. – 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. – 8 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. – 8 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. – 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 6 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. – 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. – 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. – 8 p.m.
Phone: (843) 795-6679
Main Library
9 a.m. – 6 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. – 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. – 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. – 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. – 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. – 8 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. – 8 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. – 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 6 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. – 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. – 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. – 8 p.m.
Phone: (843) 795-6679
Main Library
9 a.m. – 6 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. – 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Collective interactions augment influenza A virus replication in a host-dependent manner.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Phipps KL;Phipps KL; Ganti K; Ganti K; Jacobs NT; Jacobs NT; Lee CY; Lee CY; Carnaccini S; Carnaccini S; White MC; White MC; Manandhar M; Manandhar M; Pickett BE; Pickett BE; Pickett BE; Tan GS; Tan GS; Tan GS; Tan GS; Ferreri LM; Ferreri LM; Perez DR; Perez DR; Perez DR; Lowen AC; Lowen AC; Lowen AC
- Source:
Nature microbiology [Nat Microbiol] 2020 Sep; Vol. 5 (9), pp. 1158-1169. Date of Electronic Publication: 2020 Jul 06.- Publication Type:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't- Language:
English - Source:
- Additional Information
- Source: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101674869 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2058-5276 (Electronic) Linking ISSN: 20585276 NLM ISO Abbreviation: Nat Microbiol Subsets: MEDLINE
- Publication Information: Original Publication: [London] : Nature Publishing Group, [2016]-
- Subject Terms: Host-Pathogen Interactions/*physiology ; Influenza A virus/*genetics ; Influenza A virus/*physiology ; Virus Replication/*genetics ; Virus Replication/*physiology; Animals ; Birds ; Chickens ; Coturnix ; Disease Models, Animal ; Dogs ; Female ; Genome, Viral ; Guinea Pigs ; Host Specificity ; Humans ; Influenza A Virus, H9N2 Subtype/genetics ; Influenza in Birds/virology ; Influenza, Human/virology ; Madin Darby Canine Kidney Cells ; Orthomyxoviridae Infections/virology
- Abstract: Infection with a single influenza A virus (IAV) is only rarely sufficient to initiate productive infection. Instead, multiple viral genomes are often required in a given cell. Here, we show that the reliance of IAV on multiple infection can form an important species barrier. Namely, we find that avian H9N2 viruses representative of those circulating widely at the poultry-human interface exhibit acute dependence on collective interactions in mammalian systems. This need for multiple infection is greatly reduced in the natural host. Quantification of incomplete viral genomes showed that their complementation accounts for the moderate reliance on multiple infection seen in avian cells but not the added reliance seen in mammalian cells. An additional form of virus-virus interaction is needed in mammals. We find that the PA gene segment is a major driver of this phenotype and that both viral replication and transcription are affected. These data indicate that multiple distinct mechanisms underlie the reliance of IAV on multiple infection and underscore the importance of virus-virus interactions in IAV infection, evolution and emergence.
- Comments: Comment in: Nat Rev Microbiol. 2020 Sep;18(9):475. (PMID: 32669680)
- References: Leeks, A., Sanjuan, R. & West, S. A. The evolution of collective infectious units in viruses. Virus Res. 265, 94–101 (2019). (PMID: 30894320647012010.1016/j.virusres.2019.03.013)
Brooke, C. B. Population diversity and collective interactions during influenza virus infection. J. Virol. 91, e01164-17 (2017).
Sanjuan, R. Collective infectious units in viruses. Trends Microbiol. 25, 402–412 (2017). (PMID: 28262512583701910.1016/j.tim.2017.02.003)
Brooke, C. B., Ince, W. L., Wei, J., Bennink, J. R. & Yewdell, J. W. Influenza A virus nucleoprotein selectively decreases neuraminidase gene-segment packaging while enhancing viral fitness and transmissibility. Proc. Natl Acad. Sci. USA 111, 16854–16859 (2014). (PMID: 2538560210.1073/pnas.14153961114250133)
Brooke, C. B. et al. Most influenza A virions fail to express at least one essential viral protein. J. Virol. 87, 3155–3162 (2013). (PMID: 23283949359217310.1128/JVI.02284-12)
Sun, J. & Brooke, C. B. Influenza A virus superinfection potential is regulated by viral genomic heterogeneity. mBio 9, e01761-18 (2018).
Fonville, J. M., Marshall, N., Tao, H., Steel, J. & Lowen, A. C. Influenza virus reassortment is enhanced by semi-infectious particles but can be suppressed by defective interfering particles. PLoS Pathog. 11, e1005204 (2015). (PMID: 26440404459527910.1371/journal.ppat.1005204)
Jacobs, N. T. et al. Incomplete influenza A virus genomes occur frequently but are readiliy complemented during localized viral spread. Nat. Commun. 10, 3526 (2019).
Nayak, D. P. Defective interfering influenza viruses. Annu. Rev. Microbiol. 34, 619–644 (1980). (PMID: 700203310.1146/annurev.mi.34.100180.003155)
Von Magnus, P. Incomplete forms of influenza virus. Adv. Virus Res. 2, 59–79 (1954). (PMID: 10.1016/S0065-3527(08)60529-1)
Brooke, C. B. Biological activities of ‘noninfectious’ influenza A virus particles. Future Virol. 9, 41–51 (2014). (PMID: 25067941410940910.2217/fvl.13.118)
Timm, C., Gupta, A. & Yin, J. Robust kinetics of an RNA virus: transcription rates are set by genome levels. Biotechnol. Bioeng. 112, 1655–1662 (2015). (PMID: 25726926565321910.1002/bit.25578)
Boulle, M. et al. HIV cell-to-cell spread results in earlier onset of viral gene expression by multiple infections per cell. PLoS Pathog. 12, e1005964 (2016). (PMID: 27812216509473610.1371/journal.ppat.1005964)
Sanjuán, R. & Thoulouze, M.-I. Why viruses sometimes disperse in groups? Virus Evol. 5, vez014 (2019). (PMID: 31249695658932610.1093/ve/vez014)
Sigal, A. et al. Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature 477, 95–98 (2011). (PMID: 2184997510.1038/nature10347)
Webster, R. G., Hinshaw, V. S., Bean, W. J. Jr, Turner, B. & Shortridge, K. F. Influenza viruses from avian and porcine sources and their possible role in the origin of human pandemic strains. Dev. Biol. Stand. 39, 461–468 (1977). (PMID: 604130)
Wright, P. F., Neumann, G. & Kawaoka, Y. in Fields Virology Vol. 1 (eds Howley. P. M. & Knipe, D. M.) 1691–1740 (Lippincott-Raven, 2006).
Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M. & Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol. Rev. 56, 152–179 (1992). (PMID: 157910837285910.1128/mr.56.1.152-179.1992)
Webster, R. G., Shortridge, K. F. & Kawaoka, Y. Influenza: interspecies transmission and emergence of new pandemics. FEMS Immunol. Med. Microbiol. 18, 275–279 (1997). (PMID: 9348163731401510.1111/j.1574-695X.1997.tb01056.x)
Taubenberger, J. K. & Morens, D. M. 1918 influenza: the mother of all pandemics. Emerg. Infect. Dis. 12, 15–22 (2006). (PMID: 16494711329139810.3201/eid1209.05-0979)
Viboud, C., Miller, M., Olson, D., Osterholm, M. & Simonsen, L. Preliminary estimates of mortality and years of life lost associated with the 2009 A/H1N1 pandemic in the US and comparison with past influenza seasons. PLoS Curr., RRN1153 (2010).
Marshall, N., Priyamvada, L., Ende, Z., Steel, J. & Lowen, A. C. Influenza virus reassortment occurs with high frequency in the absence of segment mismatch. PLoS Pathog. 9, e1003421 (2013). (PMID: 23785286368174610.1371/journal.ppat.1003421)
Perez, D. R. et al. Role of quail in the interspecies transmission of H9 influenza A viruses: molecular changes on HA that correspond to adaptation from ducks to chickens. J. Virol. 77, 3148–3156 (2003). (PMID: 1258433914977010.1128/JVI.77.5.3148-3156.2003)
Russell, A. B., Trapnell, C. & Bloom, J. D. Extreme heterogeneity of influenza virus infection in single cells. eLife 7, e32303 (2018).
Ramos, I. et al. Innate immune response to influenza virus at single-cell resolution in human epithelial cells revealed paracrine induction of interferon lambda 1. J. Virol. 93, e00559-19 (2019).
Cristobal Vera, J. et al. A common pattern of influenza A virus single cell gene expression heterogeneity governs the innate antiviral response to infection. Preprint at bioRxiv, https://doi.org/10.1101/858373 (2019).
Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017). (PMID: 28091601524181810.1038/ncomms14049)
Butt, K. M. et al. Human infection with an avian H9N2 influenza A virus in Hong Kong in 2003. J. Clin. Microbiol. 43, 5760–5767 (2005). (PMID: 16272514128779910.1128/JCM.43.11.5760-5767.2005)
Peiris, M. et al. Human infection with influenza H9N2. Lancet 354, 916–917 (1999). (PMID: 1048995410.1016/S0140-6736(99)03311-5)
Guan, Y. et al. H9N2 influenza viruses possessing H5N1-like internal genomes continue to circulate in poultry in southeastern China. J. Virol. 74, 9372–9380 (2000). (PMID: 1100020511236510.1128/JVI.74.20.9372-9380.2000)
Guan, Y., Shortridge, K. F., Krauss, S. & Webster, R. G. Molecular characterization of H9N2 influenza viruses: were they the donors of the “internal” genes of H5N1 viruses in Hong Kong? Proc. Natl Acad. Sci. USA 96, 9363–9367 (1999). (PMID: 1043094810.1073/pnas.96.16.936317788)
Lam, T. T. et al. The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature 502, 241–244 (2013). (PMID: 23965623380109810.1038/nature12515)
Wu, A. et al. Sequential reassortments underlie diverse influenza H7N9 genotypes in China. Cell Host Microbe 4, 446–452 (2013). (PMID: 10.1016/j.chom.2013.09.001)
Jacobs, N. T. et al. Incomplete influenza A virus genomes occur frequently but are readily complemented during localized viral spread. Nat. Commun. 10, 3526 (2019). (PMID: 31387995668465710.1038/s41467-019-11428-x)
McCrone, J. T. et al. Stochastic processes constrain the within and between host evolution of influenza virus. eLife 7, e35962 (2018).
Valesano, A. L. et al. Influenza B viruses exhibit lower within-host diversity than influenza A viruses in human hosts. J. Virol. 94, e01710-19 (2020).
Jagger, B. W. et al. An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science 337, 199–204 (2012). (PMID: 22745253355224210.1126/science.1222213)
Te Velthuis, A. J. & Fodor, E. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat. Rev. Microbiol. 14, 479–493 (2016). (PMID: 10.1038/nrmicro.2016.87)
Dias, A. et al. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 458, 914–918 (2009). (PMID: 1919445910.1038/nature07745)
Fan, H. et al. Structures of influenza A virus RNA polymerase offer insight into viral genome replication. Nature 573, 287–290 (2019). (PMID: 31485076679555310.1038/s41586-019-1530-7)
Gaucherand, L. et al. The influenza A virus endoribonuclease PA-X usurps host mRNA processing machinery to limit host gene expression. Cell Rep. 27, 776–792 (2019). (PMID: 30995476649940010.1016/j.celrep.2019.03.063)
Khaperskyy, D. A., Schmaling, S., Larkins-Ford, J., McCormick, C. & Gaglia, M. M. Selective degradation of host RNA polymerase II transcripts by influenza A virus PA-X host shutoff protein. PLoS Pathog. 12, e1005427 (2016). (PMID: 26849127474403310.1371/journal.ppat.1005427)
Chao, L., Tran, T. & Matthews, C. Muller’s Ratchet and the advantage of sex in the RNA virus φ6. Evolution 46, 289–299 (1992). (PMID: 28564033)
Froissart, R. et al. Co-infection weakens selection against epistatic mutations in RNA viruses. Genetics 168, 9–19 (2004). (PMID: 15454523144811110.1534/genetics.104.030205)
Novella, I. S., Reissig, D. D. & Wilke, C. O. Density-dependent selection in vesicular stomatitis virus. J. Virol. 78, 5799–5804 (2004). (PMID: 1514097741581710.1128/JVI.78.11.5799-5804.2004)
Wilke, C. O. & Novella, I. S. Phenotypic mixing and hiding may contribute to memory in viral quasispecies. BMC Microbiol. 3, 11 (2003). (PMID: 1279581616544010.1186/1471-2180-3-11)
Danzy, S. et al. Mutations to PB2 and NP proteins of an avian influenza virus combine to confer efficient growth in primary human respiratory cells. J. Virol. 88, 13436–13446 (2014). (PMID: 25210184424908810.1128/JVI.01093-14)
Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G. & Webster, R. G. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc. Natl Acad. Sci. USA 97, 6108–6113 (2000). (PMID: 1080197810.1073/pnas.10013369718566)
Schwartz, S. L. & Lowen, A. C. Droplet digital PCR: a novel method for detection of influenza virus defective interfering particles. J. Virol. Methods 237, 159–165 (2016). (PMID: 27590979505685810.1016/j.jviromet.2016.08.023)
Perez, D. R., Webby, R. J., Hoffmann, E. & Webster, R. G. Land-based birds as potential disseminators of avian mammalian reassortant influenza A viruses. Avian Dis. 47, 1114–1117 (2003). (PMID: 1457512410.1637/0005-2086-47.s3.1114)
Song, H., Nieto, G. R. & Perez, D. R. A new generation of modified live-attenuated avian influenza viruses using a two-strategy combination as potential vaccine candidates. J. Virol. 81, 9238–9248 (2007). (PMID: 17596317195140510.1128/JVI.00893-07)
Sorrell, E. M., Wan, H., Araya, Y., Song, H. & Perez, D. R. Minimal molecular constraints for respiratory droplet transmission of an avian–human H9N2 influenza A virus. Proc. Natl Acad. Sci. USA 106, 7565–7570 (2009). (PMID: 1938072710.1073/pnas.09008771062670882)
Brown, J. D. et al. Intestinal excretion of a wild bird-origin H3N8 low pathogenic avian influenza virus in mallards (Anas platyrhynchos). J. Wildl. Dis. 48, 991–998 (2012). (PMID: 2306050010.7589/2011-09-280)
Chen, H. et al. Partial and full PCR-based reverse genetics strategy for influenza viruses. PLoS ONE 7, e46378 (2012). (PMID: 23029501346085610.1371/journal.pone.0046378)
Matlin, K. S., Reggio, H., Helenius, A. & Simons, K. Infectious entry pathway of influenza virus in a canine kidney cell line. J. Cell Biol. 91, 601–613 (1981). (PMID: 732811110.1083/jcb.91.3.601)
Yoshimura, A. & Ohnishi, S. Uncoating of influenza virus in endosomes. J. Virol. 51, 497–504 (1984). (PMID: 643111925446510.1128/jvi.51.2.497-504.1984)
Phipps, K. L. et al. Seasonal H3N2 and 2009 pandemic H1N1 influenza A viruses reassort efficiently but produce attenuated progeny. J. Virol. 91, e00830-17 (2017).
Reed, L. J. & Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 27, 493–497 (1938). (PMID: 10.1093/oxfordjournals.aje.a118408)
Campbell, P. J. et al. The M segment of the 2009 pandemic influenza virus confers increased NA activity, filamentous morphology and efficient contact transmissibility to A/Puerto Rico/8/1934-based reassortant viruses. J. Virol. 88, 3802–3814 (2014).
Wittwer, C. T., Reed, G. H., Gundry, C. N., Vandersteen, J. G. & Pryor, R. J. High-resolution genotyping by amplicon melting analysis using LCGreen. Clin. Chem. 49, 853–860 (2003). (PMID: 1276597910.1373/49.6.853)
Richard, M., Herfst, S., Tao, H., Jacobs, N. T. & Lowen, A. C. Influenza A virus reassortment is limited by anatomical compartmentalization following co-infection via distinct routes. J. Virol. 92, e02063-17 (2017).
Simpson, E. H. Measurement of diversity. Nature 163, 688 (1949). (PMID: 10.1038/163688a0)
Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973). (PMID: 10.2307/1934352)
Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006). (PMID: 10.1111/j.2006.0030-1299.14714.x)
Ward, J. Hierarchical grouping to optimize an objective function. J. Am. Statistical Assoc. 48, 236–244 (1963).
Zhou, B. et al. Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and Swine origin human influenza a viruses. J. Virol. 83, 10309–10313 (2009). (PMID: 19605485274805610.1128/JVI.01109-09)
Drayman, N., Kler, S., Ben-nun-Shaul, O. & Oppenheim, A. Rapid method for SV40 titration. J. Virol. Methods 164, 145–147 (2010). (PMID: 2000590310.1016/j.jviromet.2009.12.003)
Kawakami, E. et al. Strand-specific real-time RT-PCR for distinguishing influenza vRNA, cRNA, and mRNA. J. Virol. Methods 173, 1–6 (2011). (PMID: 2118586910.1016/j.jviromet.2010.12.014)
Pflug, A., Guilligay, D., Reich, S. & Cusack, S. Structure of influenza A polymerase bound to the viral RNA promoter. Nature 516, 355–360 (2014). (PMID: 2540914210.1038/nature14008)
Lukarska, M. et al. Structural basis of an essential interaction between influenza polymerase and Pol II CTD. Nature 541, 117–121 (2017). (PMID: 2800240210.1038/nature20594) - Grant Information: HHSN272201400008C United States AI NIAID NIH HHS; T32 AI106699 United States AI NIAID NIH HHS; R01 AI127799 United States AI NIAID NIH HHS; U19 AI110819 United States AI NIAID NIH HHS; HHSN272201400004C United States AI NIAID NIH HHS
- Publication Date: Date Created: 20200708 Date Completed: 20201117 Latest Revision: 20220422
- Publication Date: 20231215
- Accession Number: PMC7484227
- Accession Number: 10.1038/s41564-020-0749-2
- Accession Number: 32632248
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.