Evolutionary-driven C-MYC gene expression in mammalian fibroblasts.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • Subject Terms:
    • Abstract:
      The extent to which mammalian cells share similar transcriptomes remains unclear. Notwithstanding, such cross-species gene expression inquiries have been scarce for defined cell types and most lack the dissection of gene regulatory landscapes. Therefore, the work was aimed to determine C-MYC relative expression across mammalian fibroblasts (Ovis aries and Bos taurus) via cross-species RT-qPCR and comprehensively explore its regulatory landscape by in silico tools. The prediction of transcription factor binding sites in C-MYC and its 2.5 kb upstream sequence revealed substantial variation, thus indicating evolutionary-driven re-wiring of cis-regulatory elements. C-MYC and its downstream target TBX3 were up-regulated in Bos taurus fibroblasts. The relative expression of C-MYC regulators [RONIN (also known as THAP11), RXRβ, and TCF3] and the C-MYC-associated transcript elongation factor CDK9 did not differ between species. Additional in silico analyses suggested Bos taurus-specific C-MYC exonization, alternative splicing, and binding sites for non-coding RNAs. C-MYC protein orthologs were highly conserved, while variation was in the transactivation domain and the leucine zipper motif. Altogether, mammalian fibroblasts display evolutionary-driven C-MYC relative expression that should be instructive for understanding cellular physiology, cellular reprogramming, and C-MYC-related diseases.
    • References:
      Melé, M. et al. Human genomics. The human transcriptome across tissues and individuals. Science 348, 660–665 (2015). (PMID: 259540024547472)
      López-Díez, R., Rastrojo, A., Villate, O. & Aguado, B. Complex tissue-specific patterns and distribution of multiple RAGE splice variants in different mammals. Genome Biol. Evol. 5, 2420–2435 (2013). (PMID: 242733133879976)
      Ulitsky, I. & Bartel, D. P. lincRNAs: Genomics, evolution, and mechanisms. Cell 154, 26–46 (2013). (PMID: 238276733924787)
      Stergachis, A. B. et al. Conservation of trans-acting circuitry during mammalian regulatory evolution. Nature 515, 365–370 (2014). (PMID: 254098254405208)
      Bartel, D. P. Metazoan microRNAs. Cell 173, 20–51 (2018). (PMID: 60916636091663)
      Stadhouders, R., Filion, G. J. & Graf, T. Transcription factors and 3D genome conformation in cell-fate decisions. Nature 569, 345–354 (2019). (PMID: 31092938)
      Brawand, D. et al. The evolution of gene expression levels in mammalian organs. Nature 478, 343–348 (2011). (PMID: 22012392)
      Breschi, A., Gingeras, T. R. & Guigó, R. Comparative transcriptomics in human and mouse. Nat. Rev. Genet. 18, 425–440 (2017). (PMID: 284795956413734)
      Cardoso-Moreira, M. et al. Gene expression across mammalian organ development. Nature 571, 505–509 (2019). (PMID: 312433696658352)
      Chen, W. et al. Cross-species analysis of gene expression and function in prefrontal cortex, hippocampus and striatum. PLoS ONE 11, e0164295. https://doi.org/10.1371/journal.pone.0164295 (2016). (PMID: 10.1371/journal.pone.0164295277167815055290)
      Rizos, D. et al. Species-related differences in blastocyst quality are associated with differences in relative mRNA transcription. Mol. Reprod. Dev. 69, 381–386 (2004). (PMID: 15457517)
      Moura, M. T. et al. Inter-genus gene expression analysis in livestock fibroblasts using reference gene validation based upon a multi-species primer set. PLoS ONE 14, e0221170. https://doi.org/10.1371/journal.pone.0221170 (2019). (PMID: 10.1371/journal.pone.0221170314120936693880)
      Maeso, I. & Tena, J. J. Favorable genomic environments for cis-regulatory evolution: A novel theoretical framework. Semin. Cell Dev. Biol. 57, 2–10 (2016). (PMID: 26673387)
      Sundaram, V. & Wysocka, J. Transposable elements as a potent source of diverse cis-regulatory sequences in mammalian genomes. Philos. Trans. R. Soc. B 375, 20190347 (2020).
      Wagner, G. P. & Lynch, V. J. The gene regulatory logic of transcription factor evolution. Trends Ecol. Evol. 23, 377–385 (2008). (PMID: 18501470)
      Mikkelsen, T. S. et al. Comparative epigenomic analysis of murine and human adipogenesis. Cell 143, 156–169 (2010). (PMID: 208878992950833)
      Kunarso, G. et al. Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat. Genet. 42, 631–634 (2010). (PMID: 20526341)
      Kim, J. et al. A Myc Network Accounts for similarities between embryonic stem and cancer cell transcription programs. Cell 143, 313–324 (2010). (PMID: 209469883018841)
      Chappell, J. & Dalton, S. Roles for MYC in the establishment and maintenance of pluripotency. Cold Spring Harb. Perspect. Med. 3, a014381. https://doi.org/10.1101/cshperspect.a014381 (2013). (PMID: 10.1101/cshperspect.a014381242963493839598)
      Eilers, M. & Eisenman, R. N. Myc’s broad reach. Genes Dev. 22, 2755–2766 (2008). (PMID: 189230742751281)
      Psathas, J. N. & Thomas-Tikhonenko, A. MYC and the art of microRNA maintenance. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a014175 (2014). (PMID: 10.1101/cshperspect.a014175247378424109576)
      Varlakhanova, N. V. & Knoepfler, P. S. Acting locally and globally: Myc’s ever-expanding roles on chromatin. Cancer Res. 69, 7487–7490 (2009). (PMID: 19773445)
      Dominguez-Sola, D. & Gautier, J. MYC and the control of DNA replication. Cold Spring Harb. Perspect. Med. 4, a014423. https://doi.org/10.1101/cshperspect.a014423 (2014). (PMID: 10.1101/cshperspect.a014423248908334031955)
      Bretones, G., Delgado, M. D. & León, J. Myc and cell cycle control. Biochim. Biophys. Acta 1849, 506–516 (2015). (PMID: 24704206)
      McMahon, S. B. MYC and the control of apoptosis. Cold Spring Harb. Perspect. Med. 4, a014407. https://doi.org/10.1101/cshperspect.a014407 (2014). (PMID: 10.1101/cshperspect.a014407249851304066641)
      Rahl, P. B. & Young, R. A. MYC and transcription elongation. Cold Spring Harb. Perspect. Med. 4, a020990. https://doi.org/10.1101/cshperspect.a020990 (2014). (PMID: 10.1101/cshperspect.a020990243848173869279)
      Nakagawa, M. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 26, 101–106 (2008). (PMID: 18059259)
      Chung, H. J. & Levens, D. c-myc expression: Keep the noise down!. Mol. Cells. 20, 157–166 (2005). (PMID: 16267388)
      Hurlin, P. J. Control of vertebrate development by MYC. Cold Spring Harb. Perspect. Med. 3, a014332. https://doi.org/10.1101/cshperspect.a014332 (2013). (PMID: 10.1101/cshperspect.a014332240032463753724)
      Facchini, L. M., Chen, S., Marhin, W. W., Lear, J. N. & Penn, L. Z. The Myc negative autoregulation mechanism requires Myc-Max association and involves the c-myc P2 minimal promoter. Mol. Cell Biol. 17, 100–114 (1997). (PMID: 8972190231734)
      Kizaki, M. et al. Effects of novel retinoic acid compound, 9-cis-retinoic acid, on proliferation, differentiation, and expression of retinoic acid receptor-alpha and retinoid X receptor-alpha RNA by HL-60 cells. Blood 82, 3592–3599 (1993). (PMID: 8260698)
      Zhu, C. Y. et al. Cell growth suppression by thanatos-associated protein 11 (THAP11) is mediated by transcriptional downregulation of c-Myc. Cell Death Differ. 16, 395–405 (2009). (PMID: 19008924)
      Shah, M., Rennoll, S. A., Raup-Konsavage, W. M. & Yochum, G. S. A dynamic exchange of TCF3 and TCF4 transcription factors controls MYC expression in colorectal cancer cells. Cell Cycle 14, 323–332 (2015). (PMID: 256590314353228)
      Lüscher, B. & Larsson, L. G. The basic region/helix-loop-helix/leucine zipper domain of Myc proto-oncoproteins: Function and regulation. Oncogene 18, 2955–2966 (1999). (PMID: 10378692)
      Sotelo, J. et al. Long-range enhancers on 8q24 regulate c-Myc. Proc. Natl. Acad. Sci. USA 107, 3001–3005 (2010). (PMID: 20133699)
      Xiang, J. F., Yang, L. & Chen, L. L. The long noncoding RNA regulation at the MYC locus. Curr. Opin. Genet. Dev. 33, 41–48 (2015). (PMID: 26254776)
      Swier, L. J. Y. M., Dzikiewicz-Krawczyk, A., Winkle, M., Van Den Berg, A. & Kluiver, J. Intricate crosstalk between MYC and non-coding RNAs regulates hallmarks of cancer. Mol. Oncol. 13, 26–45 (2019). (PMID: 30451365)
      Schmidt, D. et al. Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 328, 1036–1040 (2010). (PMID: 203787743008766)
      Trono, D. Transposable elements, polydactyl proteins, and the genesis of human-specific transcription networks. Cold Spring Harb. Symp. Quant. Biol. 80, 281–288 (2015). (PMID: 26763983)
      Trizzino, M. et al. Transposable elements are the primary source of novelty in primate gene regulation. Genome Res. 27, 1623–1633 (2017). (PMID: 288552625630026)
      Han, J. et al. Tbx3 improves the germ-line competency of induced pluripotent stem cells. Nature 463, 1096–1100 (2010). (PMID: 201399652901797)
      Fang, X. et al. The zinc finger transcription factor ZFX is required for maintaining the tumorigenic potential of glioblastoma stem cells. Stem Cells 32, 2033–2047 (2014). (PMID: 248315404349564)
      Paulin, F. E., Chappell, S. A. & Willis, A. E. A single nucleotide change in the c-myc internal ribosome entry segment leads to enhanced binding of a group of protein factors. Nucleic Acids Res. 26, 3097–3103 (1998). (PMID: 9628905147696)
      Blume, S. W. et al. Inhibition of tumorigenicity by the 5ʹ-untranslated RNA of the human c-myc P0 transcript. Exp. Cell Res. 288, 131–142 (2003). (PMID: 12878165)
      Meristoudis, C. et al. Systematic analysis of the contribution of c-myc mRNA constituents upon cap and IRES mediated translation. Biol. Chem. 396, 1301–1313 (2015). (PMID: 26351916)
      Villar, D. et al. Enhancer evolution across 20 mammalian species. Cell 160, 554–566 (2015). (PMID: 256354624313353)
      Lu, H. et al. Compensatory induction of MYC expression by sustained CDK9 inhibition via a BRD4-dependent mechanism. Elife 4, e06535. https://doi.org/10.7554/eLife.06535 (2015). (PMID: 10.7554/eLife.06535260837144490784)
      Boffo, S., Damato, A., Alfano, L. & Giordano, A. CDK9 inhibitors in acute myeloid leukemia. J. Exp. Clin. Cancer Res. 37, 36. https://doi.org/10.1186/s13046-018-0704-8 (2018). (PMID: 10.1186/s13046-018-0704-8294718525824552)
      Lehmann, F. M. et al. Humanized c-Myc mouse. PLoS ONE 7, e42021. https://doi.org/10.1371/journal.pone.0042021 (2012). (PMID: 10.1371/journal.pone.0042021228600513409231)
      Taylor, S., Wakem, M., Dijkman, G., Alsarraj, M. & Nguyen, M. A practical approach to RT-qPCR-publishing data that conform to the MIQE guidelines. Methods 50, S1–S5 (2010). (PMID: 20215014)
      Moura, M. T. et al. Activity of non-canonical pluripotency-associated transcription factors in goat cumulus-oocyte complexes. Livestock Sci. 212, 52–56 (2018).
      Pfaffl, M. W., Horgan, G. W. & Dempfle, L. Relative expression software tool (REST) for groupwise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30, e36. https://doi.org/10.1093/nar/30.9.e36 (2002). (PMID: 10.1093/nar/30.9.e3611972351113859)
      Sandelin, A., Wasserman, W. W. & Lenhard, B. ConSite: Web-based prediction of regulatory elements using cross-species comparison. Nucleic Acids Res. 32, W249–W252 (2004). (PMID: 15215389441510)
      Messeguer, X. et al. PROMO: Detection of known transcription regulatory elements using species-tailored searches. Bioinformatics 18, 333–334 (2002). (PMID: 11847087)
      Shamimuzzaman, M. et al. Bovine Genome Database: New annotation tools for a new reference genome. Nucleic Acids Res. 48, D676–D681 (2020). (PMID: 31647100)
      Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004). (PMID: 15034147390337)
      Chang, T. H. et al. An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs. BMC Bioinform. 14(Suppl 2), S2–S4 (2013).
      Zhou, Y., Zeng, P., Li, Y. H., Zhang, Z. & Cui, Q. SRAMP: Prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features. Nucleic Acids Res. 44, e91 (2016). (PMID: 268967994889921)
      Letunic, I. & Bork, P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 46, D493–D496 (2018). (PMID: 29040681)
    • Accession Number:
      0 (Proto-Oncogene Proteins c-myc)
      0 (T-Box Domain Proteins)
      EC 2.7.11.22 (Cyclin-Dependent Kinase 9)
    • Publication Date:
      Date Created: 20200708 Date Completed: 20201221 Latest Revision: 20210706
    • Publication Date:
      20240829
    • Accession Number:
      PMC7338511
    • Accession Number:
      10.1038/s41598-020-67391-x
    • Accession Number:
      32632086