Differential expression of polyamine biosynthetic pathways in skin lesions and in plasma reveals distinct profiles in diffuse cutaneous leishmaniasis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • Subject Terms:
    • Abstract:
      Tegumentary leishmaniasis (TL) is a parasitic disease that can result in wide spectrum clinical manifestations. It is necessary to understand host and parasite determinants of clinical outcomes to identify novel therapeutic targets. Previous studies have indicated that the polyamine biosynthetic pathway is critical for Leishmania growth and survival. Despite its importance, expression of the such pathway has not been previously investigated in TL patients. We performed an exploratory analysis employing Systems Biology tools to compare circulating polyamines and amino acid concentration as well as polyamine pathway gene expression in cutaneous lesions patients presenting with distinct TL disease presentations. Diffuse cutaneous leishmaniasis (DCL) was associated with higher concentrations of amino acids, polyamines and its substrate transporters than mucosal cutaneous leishmaniasis or localized cutaneous leishmaniasis. In addition, the RNA expression of polyamine-related genes of patients lesions from two separate cohorts demonstrated that differential activation of this pathway is associated with parasite loads and able to discriminate the clinical spectrum of TL. Taken together, our findings highlight a new aspect of DCL immunopathogenesis indicating that the polyamine pathway may be explored as a novel therapeutic target to control disease burden.
    • References:
      Convit, J., Pinardi, M. E. & Rondón, A. J. Diffuse cutaneous leishmaniasis: A disease due to an immunological defect of the host. Trans. R. Soc. Trop. Med. Hyg. 66, 603–610 (1972). (PMID: 5071089)
      Convit, J. et al. The clinical and immunological spectrum of American cutaneous leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 87, 444–448 (1993). (PMID: 8249076)
      Silveira, F. T., Lainson, R. & Corbett, C. E. P. Clinical and immunopathological spectrum of American cutaneous leishmaniasis with special reference to the disease in Amazonian Brazil: A review. Mem. Inst. Oswaldo Cruz. 99, 239–251 (2004). (PMID: 15273794)
      França-Costa, J. et al. Arginase I, polyamine, and prostaglandin E2 pathways suppress the inflammatory response and contribute to diffuse cutaneous leishmaniasis. J. Infect. Dis. 211, 426–435 (2015). (PMID: 25124926)
      Muxel, S. M., Laranjeira-Silva, M. F., Zampieri, R. A. & Floeter-Winter, L. M. Leishmania (Leishmania) amazonensis induces macrophage miR-294 and miR-721 expression and modulates infection by targeting NOS2 and L-arginine metabolism. Sci. Rep. 7, 44141 (2017). (PMID: 282764975343489)
      Muxel, S. M., Acuña, S. M., Aoki, J. I., Zampieri, R. A. & Floeter-Winter, L. M. Toll-Like Receptor and miRNA-let-7e expression alter the inflammatory response in Leishmania amazonensis-infected macrophages. Front. Immunol. 9, 2792 (2018). (PMID: 305554766283264)
      Handa, A. K., Fatima, T. & Mattoo, A. K. Polyamines: Bio-molecules with diverse functions in plant and human health and disease. Front. Chem. 6, 10 (2018). (PMID: 294681485807879)
      Pegg, A. E. Functions of polyamines in mammals. J. Biol. Chem. 291, 14904–14912 (2016). (PMID: 272682514946908)
      Hong, L., Huarui, H. & Wolfbeis, O. S. An optical biosensor for lysine based on the use of lysine decarboxylase and a cadaverine-sensitive membrane. Biosens. Bioelectron. 7, 725–732 (1992).
      Mandal, A. et al. L-arginine uptake by cationic amino acid transporter promotes intra-macrophage survival of Leishmania donovani by enhancing arginase-mediated polyamine synthesis. Front. Immunol. 8, 839 (2017). (PMID: 287987435526900)
      Laranjeira-Silva, M. F., Zampieri, R. A., Muxel, S. M., Floeter-Winter, L. M. & Markus, R. P. Melatonin attenuates Leishmania (L.) amazonensis infection by modulating arginine metabolism. J. Pineal Res. 59, 478–487 (2015). (PMID: 26383232)
      Wanasen, N. & Soong, L. L-arginine metabolism and its impact on host immunity against Leishmania infection. Immunol. Res. 41, 15–25 (2008). (PMID: 180408862639710)
      Rath, M., Müller, I., Kropf, P., Closs, E. I. & Munder, M. Metabolism via arginase or nitric oxide synthase: Two competing arginine pathways in macrophages. Front. Immunol. 5, 532 (2014). (PMID: 253861784209874)
      Novais, F. O. et al. Human classical monocytes control the intracellular stage of Leishmania braziliensis by reactive oxygen species. J. Infect. Dis. 209, 1288–1296 (2014). (PMID: 244035613969552)
      Carneiro, P. P. et al. The role of nitric oxide and reactive oxygen species in the killing of Leishmania braziliensis by monocytes from patients with cutaneous Leishmaniasis. PLoS ONE 11, e0148084 (2016). (PMID: 268402534739692)
      Christensen, S. M. et al. Host and parasite responses in human diffuse cutaneous leishmaniasis caused by L. amazonensis. PLoS Negl. Trop. Dis. 13, e0007152 (2019). (PMID: 308452236405045)
      Shaked-Mishan, P. et al. A novel high-affinity arginine transporter from the human parasitic protozoan Leishmania donovani. Mol. Microbiol. 60, 30–38 (2006). (PMID: 16556218)
      Wanasen, N., MacLeod, C. L., Ellies, L. G. & Soong, L. L-arginine and cationic amino acid transporter 2B regulate growth and survival of Leishmania amazonensis amastigotes in macrophages. Infect. Immun. 75, 2802–2810 (2007). (PMID: 173871631932894)
      Colotti, G. & Ilari, A. Polyamine metabolism in Leishmania: From arginine to trypanothione. Amino Acids 40, 269–285 (2011).
      Battaglia, V., DeStefano Shields, C., Murray-Stewart, T. & Casero, R. A. Jr. Polyamine catabolism in carcinogenesis: Potential targets for chemotherapy and chemoprevention. Amino Acids 46, 511–519 (2014). (PMID: 23771789)
      Kakegawa, T. et al. Effect of various polyamine analogs on in vitro polypeptide synthesis. Arch. Biochem. Biophys. 261, 250–256 (1988). (PMID: 3281585)
      da Silva, M. F. L., Zampieri, R. A., Muxel, S. M., Beverley, S. M. & Floeter-Winter, L. M. Leishmania amazonensis arginase compartmentalization in the glycosome is important for parasite infectivity. PLoS ONE 7, e34022 (2012). (PMID: 224795073316525)
      Wu, G. et al. Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37, 153–168 (2009). (PMID: 19030957)
      Marchese, L. et al. The uptake and metabolism of amino acids, and their unique role in the biology of pathogenic trypanosomatids. Pathogens 7, 36 (2018). (PMID: 6027508)
      Castilho-Martins, E. A., Laranjeira da Silva, M. F., dos Santos, M. G., Muxel, S. M. & Floeter-Winter, L. M. Axenic Leishmania amazonensis promastigotes sense both the external and internal arginine pool distinctly regulating the two transporter-coding genes. PLoS ONE 6, e27818 (2011). (PMID: 221147013218042)
      Aoki, J. I. et al. L-arginine availability and arginase activity: Characterization of amino acid permease 3 in Leishmania amazonensis. PLoS Negl. Trop. Dis. 11, e0006025 (2017). (PMID: 290731505693463)
      Boitz, J. M. et al. Arginase is essential for survival of Leishmania donovani promastigotes but not intracellular amastigotes. Infect. Immun. 85, e00554 (2017). (PMID: 27795357)
      Roberts, S. C. et al. Arginase plays a pivotal role in polyamine precursor metabolism in Leishmania. J. Biol. Chem. 279, 23668–23678 (2004). (PMID: 15023992)
      Roberts, S. C. et al. Genetic analysis of spermidine synthase from Leishmania donovani. Mol. Biochem. Parasitol. 115, 217–226 (2001). (PMID: 11420108)
      Muxel, S. M. et al. Metabolomic profile of BALB/c macrophages infected with Leishmania amazonensis: Deciphering L-arginine metabolism. Int. J. Mol. Sci. 20, 6248 (2019). (PMID: 6940984)
      Müller, S., Coombs, G. H. & Walter, R. D. Targeting polyamines of parasitic protozoa in chemotherapy. Trends Parasitol. 17, 242–249 (2001). (PMID: 11323309)
      Minois, N., Carmona-Gutierrez, D. & Madeo, F. Polyamines in aging and disease. Aging 3, 716–732 (2011). (PMID: 218694573184975)
      Beenukumar, R. R., Gödderz, D., Palanimurugan, R. & Dohmen, R. J. Polyamines directly promote antizyme-mediated degradation of ornithine decarboxylase by the proteasome. Microb. Cell Fact. 2, 197–207 (2015).
      Bae, D.-H., Lane, D. J. R., Jansson, P. J. & Richardson, D. R. The old and new biochemistry of polyamines. Biochim. Biophys. Acta Gen. Subj. 1862, 2053–2068 (2018). (PMID: 29890242)
      Closs, E. I., Boissel, J.-P., Habermeier, A. & Rotmann, A. Structure and function of cationic amino acid transporters (CATs). J. Membr. Biol. 213, 67–77 (2006). (PMID: 17417706)
      Xu, L. et al. Polyamine synthesis enzyme AMD1 is closely associated with tumorigenesis and prognosis of human gastric cancers. Carcinogenesis https://doi.org/10.1093/carcin/bgz098 (2019). (PMID: 10.1093/carcin/bgz09831784734)
      França-Costa, J. et al. Differential expression of the eicosanoid pathway in patients with localized or mucosal cutaneous Leishmaniasis. J. Infect. Dis. 213, 1143–1147 (2016). (PMID: 26582954)
      de Oliveira, L. F. et al. Polyamine- and amino acid-related metabolism: The roles of arginine and ornithine are associated with the embryogenic potential. Plant Cell Physiol. 59, 1084–1098 (2018). (PMID: 29490084)
      Santa-Catarina, C. et al. IAA, ABA, polyamines and free amino acids associated with zygotic embryo development of Ocotea catharinensis. Plant Growth Regul. 49, 237–247 (2006).
      Wu, G. & Meininger, C. J. Analysis of citrulline, arginine, and methylarginines using high-performance liquid chromatography. Methods Enzymol. 440, 177–189 (2008). (PMID: 18423217)
      Geiss, G. K. et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol. 26, 317–325 (2008). (PMID: 18278033)
      Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics 30, 2114–2120 (2014). (PMID: 2469540424695404)
      Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017). (PMID: 2826395928263959)
      Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010). (PMID: 1991030819910308)
      Amorim, C. F. et al. Variable gene expression and parasite load predict treatment outcome in cutaneous leishmaniasis. Sci. Transl. Med. 11, eaax4204 (2019). (PMID: 317482297068779)
      Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). (PMID: 2551628125516281)
      Robin, X. et al. pROC: An open-source package for R and S to analyze and compare ROC curves. BMC Bioinformatics 12, 77 (2011). (PMID: 2141420821414208)
      Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016). (PMID: 27207943)
    • Accession Number:
      0 (Amino Acids)
      0 (Polyamines)
    • Publication Date:
      Date Created: 20200701 Date Completed: 20201215 Latest Revision: 20210629
    • Publication Date:
      20231215
    • Accession Number:
      PMC7324605
    • Accession Number:
      10.1038/s41598-020-67432-5
    • Accession Number:
      32601369