Functional and structural characterization of PII-like protein CutA does not support involvement in heavy metal tolerance and hints at a small-molecule carrying/signaling role.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies Country of Publication: England NLM ID: 101229646 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1742-4658 (Electronic) Linking ISSN: 1742464X NLM ISO Abbreviation: FEBS J Subsets: MEDLINE
    • Publication Information:
      Original Publication: Oxford, UK : Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies, c2005-
    • Subject Terms:
    • Abstract:
      The PII-like protein CutA is annotated as being involved in Cu 2+ tolerance, based on analysis of Escherichia coli mutants. However, the precise cellular function of CutA remains unclear. Our bioinformatic analysis reveals that CutA proteins are universally distributed across all domains of life. Based on sequence-based clustering, we chose representative cyanobacterial CutA proteins for physiological, biochemical, and structural characterization and examined their involvement in heavy metal tolerance, by generating CutA mutants in filamentous Nostoc sp. and in unicellular Synechococcus elongatus. However, we were unable to find any involvement of cyanobacterial CutA in metal tolerance under various conditions. This prompted us to re-examine experimentally the role of CutA in protecting E. coli from Cu 2+ . Since we found no effect on copper tolerance, we conclude that CutA plays a different role that is not involved in metal protection. We resolved high-resolution CutA structures from Nostoc and S. elongatus. Similarly to their counterpart from E. coli and to canonical PII proteins, cyanobacterial CutA proteins are trimeric in solution and in crystal structure; however, no binding affinity for small signaling molecules or for Cu 2+ could be detected. The clefts between the CutA subunits, corresponding to the binding pockets of PII proteins, are formed by conserved aromatic and charged residues, suggesting a conserved binding/signaling function for CutA. In fact, we find binding of organic Bis-Tris/MES molecules in CutA crystal structures, revealing a strong tendency of these pockets to accommodate cargo. This highlights the need to search for the potential physiological ligands and for their signaling functions upon binding to CutA. DATABASES: Structural data are available in Protein Data Bank (PDB) under the accession numbers 6GDU, 6GDV, 6GDW, 6GDX, 6T76, and 6T7E.
      (© 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.)
    • References:
      Stadtman ER (2001) The story of glutamine synthetase regulation. J Biol Chem 276, 44357-44364.
      Selim KA, Ermilova E & Forchhammer K (2020) From cyanobacteria to Archaeplastida: new evolutionary insights into PII signalling in the plant kingdom. New Phytol 227, 722-731.
      Forcada-Nadal A, Llácer JL, Contreras A, Marco-Marín C & Rubio V (2018) The PII-NAGK-PipX-NtcA regulatory axis of cyanobacteria: a tale of changing partners, allosteric effectors and non-covalent interactions. Front Mol Biosci 5, 91.
      Thomas G, Coutts G & Merrick M (2000) The glnKamtB operon. A conserved gene pair in prokaryotes. Trends Genet 16, 11-14.
      Kinch LN & Grishin NV (2002) Expanding the nitrogen regulatory protein superfamily: Homology detection at below random sequence identity. Proteins 48, 75-84.
      Forchhammer K & Lüddecke J (2016) Sensory properties of the PII signalling protein family. FEBS J 283, 425-437.
      Selim KA, Haase F, Hartmann MD, Hagemann M & Forchhammer K (2018) PII-like signaling protein SbtB links cAMP sensing with cyanobacterial inorganic carbon response. Proc Natl Acad Sci U S A 115, E4861-E4869.
      Arnesano F, Banci L, Benvenuti M, Bertini I, Calderone V, Mangani S & Viezzoli MS (2003) The evolutionarily conserved trimeric structure of CutA1 proteins suggests a role in signal transduction. J Biol Chem 278, 45999-46006.
      Fong ST, Camakaris J & Lee BT (1995) Molecular genetics of a chromosomal locus involved in copper tolerance in Escherichia coli K-12. Mol Microbiol 15, 1127-1137.
      Navaratnam DS, Fernando FS, Priddle JD, Giles K, Clegg SM, Pappin DJ, Craig I & Smith AD (2000) Hydrophobic protein that copurifies with human brain acetylcholinesterase: amino acid sequence, genomic organization, and chromosomal localization. J Neurochem 74, 2146-2153.
      Perrier AL, Cousin X, Boschetti N, Haas R, Chatel JM, Bon S, Roberts WL, Pickett SR, Massoulié J, Rosenberry TL & et al. (2000) Two distinct proteins are associated with tetrameric acetylcholinesterase on the cell surface. J Biol Chem 275, 34260-34265.
      Perrier AL, Massoulié J & Krejci E (2002) PRiMA: the membrane anchor of acetylcholinesterase in the brain. Neuron 33, 275-285.
      Liang D, Nunes-Tavares N, Xie HQ, Carvalho S, Bon S & Massoulié J (2009) Protein CutA undergoes an unusual transfer into the secretory pathway and affects the folding, oligomerization, and secretion of acetylcholinesterase. J Biol Chem 284, 5195-5207.
      Zhao Y, Wang Y, Hu J, Zhang X & Zhang YW (2012) CutA divalent cation tolerance homolog (Escherichia coli) (CUTA) regulates β-cleavage of β-amyloid precursor protein (APP) through interacting with β-site APP cleaving protein 1 (BACE1). J Biol Chem 287, 11141-11150.
      Yang J, Yang H, Yan L, Yang L & Yu L (2009) Characterization of the human CUTA isoform2 present in the stably transfected HeLa cells. Mol Biol Rep 36, 63-69.
      Naylor MJ, Oakes SR, Gardiner-Garden M, Harris J, Blazek K, Ho TW, Li FC, Wynick D, Walker AM & Ormandy CJ (2005) Transcriptional changes underlying the secretory activation phase of mammary gland development. Mol Endocrinol 19, 1868-1883.
      Laskowski RA, Watson JD & Thornton JM (2003) From protein structure to biochemical function? J Struct Funct Genomics 4, 167-177.
      Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K & Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10, 421.
      Zimmermann L, Stephens A, Nam SZ, Rau D, Kübler J, Lozajic M, Gabler F, Söding J, Lupas AN & Alva VA (2018) Completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 430, 2237-2243.
      Fox NK, Brenner SE & Chandonia JM (2014) SCOPe: Structural Classification of Proteins-extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Res 42, D304-D-309.
      Frickey T & Lupas A (2004) CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics 20, 3702-3704.
      Fournier GP & Poole AM (2018) A briefly argued case that Asgard archaea are part of the eukaryote tree. Front Microbiol 9, 1896.
      Holtman CK, Chen Y, Sandoval P, Gonzales A, Nalty MS, Thomas TL, Youderian P & Golden SS (2005) High-throughput functional analysis of the Synechococcus elongatus PCC 7942 genome. DNA Res 12, 103-115.
      Rubin BE, Wetmore KM, Price MN, Diamond S, Shultzaberger RK, Lowe LC, Curtin G, Arkin AP, Deutschbauer A & Golden SS (2015) The essential gene set of a photosynthetic organism. Proc Natl Acad Sci USA 112, E6634-E6643.
      Srivastava A, Brilisauer K, Rai AK, Ballal A, Forchhammer K & Tripathi AK (2017) Down-regulation of the alternative sigma factor SigJ confers a photoprotective phenotype to Anabaena PCC 7120. Plant Cell Physiol 58, 287-297.
      Bornikoel J, Staiger J, Madlung J, Forchhammer K & Maldener I (2018) LytM factor Alr3353 affects filament morphology and cell-cell communication in the multicellular cyanobacterium Anabaena sp. PCC 7120. Mol Microbiol 108, 187-203.
      Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL & Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2 (2006), 0008.
      Zeth K, Fokina O & Forchhammer K (2014) Structural basis and target-specific modulation of ADP sensing by the Synechococcus elongatus PII signaling protein. J Biol Chem 289, 8960-8972.
      Bagautdinov B (2014) The structures of the CutA1 proteins from Thermus thermophilus and Pyrococcus horikoshii: characterization of metal-binding sites and metal-induced assembly. Acta Crystallogr F Struct Biol Commun 70, 404-413.
      Sant'Anna FH, Trentini DB, de Souto Weber S, Cecagno R, da Silva SC & Schrank IS (2009) The PII superfamily revised: a novel group and evolutionary insights. J Mol Evol 68, 322-336.
      Wheatley NM, Eden KD, Ngo J, Rosinski JS, Sawaya MR, Cascio D, Collazo M, Hoveida H, Hubbell WL & Yeates TO (2016) A PII-like protein regulated by bicarbonate: structural and biochemical studies of the carboxysome-associated CPII protein. J Mol Biol 428, 4013-4030.
      Forchhammer K & Selim KA (2020) Carbon/nitrogen homeostasis control in cyanobacteria. FEMS Microbiol Rev 44, 33-53.
      Campeotto I, Zhang Y, Mladenov MG, Freemont PS & Gründling A (2015) Complex structure and biochemical characterization of the Staphylococcus aureus cyclic diadenylate monophosphate (c-di-AMP)-binding protein PstA, the founding member of a new signal transduction protein family. J Biol Chem 290, 2888-2901.
      Gundlach J, Dickmanns A, Schröder-Tittmann K, Neumann P, Kaesler J, Kampf J, Herzberg C, Hammer E, Schwede F, Kaever V et al. (2015) Identification, characterization, and structure analysis of the cyclic di-AMP-binding PII-like signal transduction protein DarA. J Biol Chem 290, 3069-3080.
      Müller M, Hopfner KP & Witte G (2015) c-di-AMP recognition by Staphylococcus aureus PstA. FEBS Lett 589, 45-51.
      Tanaka Y, Tsumoto K, Nakanishi T, Yasutake Y, Sakai N, Yao M, Tanaka I & Kumagai I (2004) Structural implications for heavy metal-induced reversible assembly and aggregation of a protein: the case of Pyrococcus horikoshii CutA. FEBS Lett 556, 167-174.
      Gupta SD, Wu HC & Rick PD (1997) A Salmonella typhimurium genetic locus which confers copper tolerance on copper-sensitive mutants of Escherichia coli. J Bacteriol 179, 4977-4984.
      Stirnimann CU, Rozhkova A, Grauschopf U, Grütter MG, Glockshuber R & Capitani G (2005) Structural basis and kinetics of DsbD-dependent cytochrome c maturation. Structure 13, 985-993.
      Furlong EJ, Choudhury HG, Kurth F, Duff AP, Whitten AE & Martin JL (2018) Disulfide isomerase activity of the dynamic, trimeric Proteus mirabilis ScsC protein is primed by the tandem immunoglobulin-fold domain of ScsB. J Biol Chem 293, 5793-5805.
      Rodrigues CM, Takita MA, Coletta-Filho HD, Olivato JC, Caserta R, Machado MA & de Souza AA (2008) Copper resistance of biofilm cells of the plant pathogen Xylella fastidiosa. Appl Microbiol Biotechnol 77, 1145-1157.
      Burkhead JL, Abdel-Ghany SE, Morrill JM, Pilon-Smits EA & Pilon M (2003) The Arabidopsis thaliana CUTA gene encodes an evolutionarily conserved copper binding chloroplast protein. Plant J 34, 856-867.
      Hanson TE, Forchhammer K, Tandeau de Marsac N & Meeks JC (1998) Characterization of the glnB gene product of Nostoc punctiforme strain ATCC 29133: glnB or the PII protein may be essential. Microbiology 144, 1537-1547.
      Zhang Y, Pu H, Wang Q, Cheng S, Zhao W, Zhang Y & Zhao J(2007) PII is important in regulation of nitrogen metabolism but not required for heterocyst formation in the cyanobacterium Anabaena sp. PCC 7120. J Biol Chem 282, 33641-33648.
      Llácer JL, Contreras A, Forchhammer K, Marco-Marín C, Gil-Ortiz F, Maldonado R, Fita I & Rubio V (2007) The crystal structure of the complex of PII and acetylglutamate kinase reveals how PII controls the storage of nitrogen as arginine. Proc Natl Acad Sci USA 104, 17644-17649.
      Llácer JL, Espinosa J, Castells MA, Contreras A, Forchhammer K & Rubio V (2010) Structural basis for the regulation of NtcA-dependent transcription by proteins PipX and PII. Proc Natl Acad Sci USA 107, 15397-15402.
      Godsey MH, Minasov G, Shuvalova L, Brunzelle JS, Vorontsov II, Collart FR & Anderson WF (2007) The 2.2 Å resolution crystal structure of Bacillus cereus Nif3-family protein YqfO reveals a conserved dimetal-binding motif and a regulatory domain. Protein Sci 16, 1285-93.
      Chellamuthu VR, Alva V & Forchhammer K (2013) From cyanobacteria to plants: conservation of PII functions during plastid evolution. Planta 237, 451-462.
      Fujishiro T, Ermler U & Shima S (2014) A possible iron delivery function of the dinuclear iron center of HcgD in [Fe]-hydrogenase cofactor biosynthesis. FEBS Lett 588, 2789-2793.
      Lüddecke J & Forchhammer K (2013) From PII signaling to metabolite sensing: a novel 2-oxoglutarate sensor that details PII-NAGK complex formation. PLoS One 8, e83181.
      Lüddecke J, Francois L, Spät P, Watzer B, Chilczuk T, Poschet G, Hell R, Radlwimmer B & Forchhammer K (2017) PII protein-derived FRET sensors for quantification and live-cell imaging of 2-oxoglutarate. Sci Rep 7, 1437.
      Chen HL, Latifi A, Zhang CC & Bernard CS (2018) Biosensors-based in vivo quantification of 2-oxoglutarate in cyanobacteria and proteobacteria. Life (Basel) 8, E51.
      King NP, Bale JB, Sheffler W, McNamara DE, Gonen S, Gonen T, Yeates TO & Baker D (2014) Accurate design of co-assembling multi-component protein nanomaterials. Nature 510, 103-108.
      Bale JB, Park RU, Liu Y, Gonen S, Gonen T, Cascio D, King NP, Yeates TO & Baker D (2015) Structure of a designed tetrahedral protein assembly variant engineered to have improved soluble expression. Protein Sci 24, 1695-1701.
      Clerico EM, Ditty JL & Golden SS (2007) Specialized techniques for site-directed mutagenesis in cyanobacteria. Methods Mol Biol 362, 155-171.
      Labella JI, Cantos R, Espinosa J, Forcada-Nadal A, Rubio V & Contreras A (2017) PipY, a member of the conserved COG0325 family of PLP-binding proteins, expands the cyanobacterial nitrogen regulatory network. Front Microbiol 8, 1244.
      Elbing K & Brent R. (2002) Growth in liquid media. In Current Protocols in Molecular Biology Chapter 1, Unit 1.2.
      Selim KA, Haffner M, Watzer B & Forchhammer K (2019) Tuning the in vitro sensing and signaling properties of cyanobacterial PII protein by mutation of key residues. Sci Rep 9, 18985.
      Selim KA, Lapina T, Forchhammer K & Ermilova E (2020) Interaction of N-acetyl-L-glutamate kinase with the PII signal transducer in the non-photosynthetic alga Polytomella parva: Co-evolution towards a hetero-oligomeric enzyme. FEBS J 287, 465-482.
      Lapina T, Selim KA, Forchhammer K & Ermilova E (2018) The PII signaling protein from red algae represents an evolutionary link between cyanobacterial and Chloroplastida PII proteins. Sci Rep 8, 790.
      Winter G, Lobley CMC & Prince SM (2013) Decision making in xia2. Acta Cryst Sect D, Biol Cryst 69, 1260-1273.
      Evans PR & Murshudov GN (2013) How good are my data and what is the resolution? Acta Cryst Sect D, Biol Cryst 69, 1204-1214.
      McCoy AJ (2007) Solving structures of protein complexes by molecular replacement with Phaser. Acta Cryst Sect D, Biol Cryst 63, 32-41.
      McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC & Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40, 658-674.
      Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F & Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Cryst Sect D, Biol Cryst 67, 355-367.
      Emsley P, Lohkamp B, Scott WG & Cowtan K (2010) Features and development of Coot. Acta Cryst Sect D, Biol Cryst 66, 486-501.
      Joosten RP, Salzemann J, Bloch V, Stockinger H, Berglund A-C, Blanchet C, Bongcam-Rudloff E, Combet C, Da Costa AL, Deleage G et al. (2009) PDB_REDO: automated re-refinement of X-ray structure models in the PDB. J Appl Crystallogr 42, 376-384.
      Kabsch W (2010) XDS. Acta Cryst Sect D, Biol Cryst 66, 125-132.
      Vagin A & Teplyakov A (2010) Molecular replacement with MOLREP. Acta Crystallogr D Biol Crystallogr 66, 22-25.
      Lovell SC, Davis IW, Arendall WB, de Bakker PIW, Word JM, Prisant MG, Richardson JS & Richardson DC (2003) Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50, 437-450.
      Laskowski RA, MacArthur MW, Moss DS & Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26, 283-291.
      Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254.
      Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.
      Labella JI, Llop A & Contreras A (2020) The default Cyanobacterial Linked Genome (dCLG): an interactive platform based on cyanobacterial linkage networks to assist functional genomics. FEBS Lett. 594,1661-1674.
      Vijayan V, Jain IH & O'Shea EK (2011) A high resolution map of a cyanobacterial transcriptome. Genome Biol 12, R47.
      Tan X, Hou S, Song K, Georg J, Klahn S, Lu X & Hess WR (2018) The primary transcriptome of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Biotechnol Biofuels 11, 218.
      Jurrus E, Engel D, Star K, Monson K, Brandi J, Felberg LE, Brookes DH, Wilson L, Chen J, Liles K et al. (2018) Improvements to the APBS biomolecular solvation software suite. Protein Sci 27, 112-128.
      Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T & Ben-Tal N (2016) ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 44, W344-W350.
    • Contributed Indexing:
      Keywords: Nostoc sp. PCC 7120; PII superfamily; PII-like protein CutA; Synechococcus elongatus PCC 7942; cyanobacteria; heavy metal tolerance; signal transduction
    • Accession Number:
      0 (Bacterial Proteins)
      0 (Metals, Heavy)
      789U1901C5 (Copper)
    • Subject Terms:
      Synechococcus elongatus
    • Publication Date:
      Date Created: 20200630 Date Completed: 20210726 Latest Revision: 20210726
    • Publication Date:
      20231215
    • Accession Number:
      10.1111/febs.15464
    • Accession Number:
      32599651