Polyphenols from Toona sinensiss Seeds Alleviate Neuroinflammation Induced by 6-Hydroxydopamine Through Suppressing p38 MAPK Signaling Pathway in a Rat Model of Parkinson's Disease.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Kluwer Academic/Plenum Publishers Country of Publication: United States NLM ID: 7613461 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-6903 (Electronic) Linking ISSN: 03643190 NLM ISO Abbreviation: Neurochem Res Subsets: MEDLINE
    • Publication Information:
      Publication: 1999- : New York, NY : Kluwer Academic/Plenum Publishers
      Original Publication: New York, Plenum Press
    • Subject Terms:
    • Abstract:
      Polyphenols from Toona sinensis seeds (PTSS) have demonstrated anti-inflammatory effects in various diseases, while the anti-neuroinflammatory effects still remain to be investigated. We aimed to investigate the effects of PTSS on Parkinson's disease and underlying mechanisms using a rat model. We employed 6-hydroxydopamine (6-OHDA) to male Sprague Dawley (SD) rats and PC12 cells to construct the in vivo and vitro models of PD and dopaminergic (DA) neuron injury, respectively. Cell viability was detected by cell counting kit-8 (CCK-8) assay and protein levels of inflammatory mediators and some p38 MAPK pathway molecules were investigated by immunohistochemistry and Western blot analyses. The results showed that 6-OHDA significantly increased protein levels of inflammatory mediators, such as cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and tumor necrosis factor α (TNF-α), which could be reversed by PTSS through suppressing the p38 MAPK pathway. The anti-inflammatory effects of PTSS were significantly enhanced by the specific p38 inhibitor of SB203580 in vitro. The present work suggests that PTSS can exert anti-inflammatory effects on PD models, which may be attributed to the suppression of p38 MAPK signaling pathway.
    • References:
      Beitz JM (2014) Parkinson’s disease: a review. Front Biosci (Schol Ed) 6:65–74. https://doi.org/10.2741/s415. (PMID: 10.2741/s415)
      Hirsch EC, Jenner P, Przedborski S (2013) Pathogenesis of Parkinson's disease. Mov Disord 28(1):24–30. https://doi.org/10.1002/mds.25032. (PMID: 10.1002/mds.2503222927094)
      Wee YV (2010) Inflammation in neurological disorders: a help or a hindrance? Neuroscientist 16(4):408–420. https://doi.org/10.1177/1073858410371379. (PMID: 10.1177/1073858410371379)
      Niranjan R (2014) The role of inflammatory and oxidative stress mechanisms in the pathogenesis of Parkinson's disease: focus on astrocytes. Mol Neurobiol 49(1):28–38. https://doi.org/10.1007/s12035-013-8483-x. (PMID: 10.1007/s12035-013-8483-x23783559)
      Gupta N, Shyamasundar S, Patnala R, Karthikeyan A, Arumugam TV, Ling EA, Dheen ST (2018) Recent progress in therapeutic strategies for microglia-mediated neuroinflammation in neuropathologies. Expert Opin Ther Targets 22(9):765–781. https://doi.org/10.1080/14728222.2018.1515917. (PMID: 10.1080/14728222.2018.151591730138572)
      Gagne JJ, Power MC (2010) Anti-inflammatory drugs and risk of Parkinson disease: a meta-analysis. Neurology 74(12):995–1002. https://doi.org/10.1212/WNL.0b013e3181d5a4a3. (PMID: 10.1212/WNL.0b013e3181d5a4a3203086842848103)
      Ren L, Yi J, Yang J, Li P, Cheng X, Mao P (2018) Nonsteroidal anti-inflammatory drugs use and risk of Parkinson disease: a dose-response meta-analysis. Medicine (Baltimore) 97(37):e12172. https://doi.org/10.1097/MD.0000000000012172. (PMID: 10.1097/MD.0000000000012172)
      Fu W, Zhuang W, Zhou S, Wang X (2015) Plant-derived neuroprotective agents in Parkinson’s disease. Am J Transl Res 7(7):1189–1202. (PMID: 263280044548312)
      Little CH, Combet E, McMillan DC, Horgan PG, Roxburgh CS (2017) The role of dietary polyphenols in the moderation of the inflammatory response in early stage colorectal cancer. Crit Rev Food Sci Nutr 57(11):2310–2320. https://doi.org/10.1080/10408398.2014.997866. (PMID: 10.1080/10408398.2014.99786626066365)
      Limonta P, Moretti RM, Marzagalli M, Fontana F, Raimondi M, Montagnani MM (2019) Role of endoplasmic reticulum stress in the anticancer activity of natural compounds. Int J Mol Sci 20(4):961–984. https://doi.org/10.3390/ijms20040961. (PMID: 10.3390/ijms200409616412802)
      González Arbeláez LF, Ciocci Pardo A, Fantinelli JC, Schinella GR, Mosca SM, Ríos JL (2018) Cardioprotection and natural polyphenols: an update of clinical and experimental studies. Food Funct 9(12):6129–6145. https://doi.org/10.1039/c8fo01307a. (PMID: 10.1039/c8fo01307a30460963)
      Mattioli R, Francioso A, d’Erme M, Trovato M, Mancini P, Piacentini L, Casale AM, Wessjohann L, Gazzino R, Costantino P, Mosca L (2019) Anti-inflammatory activity of a polyphenolic extract from Arabidopsis thaliana in in vitro and in vivo models of Alzheimer's disease. Int J Mol Sci 20(3):708–726. https://doi.org/10.3390/ijms20030708. (PMID: 10.3390/ijms200307086387160)
      Ghaffari F, Hajizadeh Moghaddam A, Zare M (2018) Neuroprotective effect of quercetin nanocrystal in a 6-hydroxydopamine model of Parkinson disease: biochemical and behavioral evidence. Basic Clin Neurosci 9(5):317–324. https://doi.org/10.32598/bcn.9.5.317. (PMID: 10.32598/bcn.9.5.317307192466360495)
      Figueira I, Menezes R, Macedo D, Costa I, Dos Santos CN (2017) Polyphenols beyond barriers: a glimpse into the brain. Curr Neuropharmacol 15(4):562–594. https://doi.org/10.2174/1570159X14666161026151545. (PMID: 10.2174/1570159X14666161026151545277842255543676)
      Zhang Y, Guo Y, Wang M, Dong H, Zhang J, Zhang L (2017) Quercetrin from Toona sinensis leaves induces cell cycle arrest and apoptosis via enhancement of oxidative stress in human colorectal cancer SW620 cells. Oncol Rep 38(6):3319–3326. https://doi.org/10.3892/or.2017.6042. (PMID: 10.3892/or.2017.6042290396095783577)
      Truong VL, Ko SY, Jun M, Jeong WS (2016) Quercitrin from Toona sinensis (Juss.) M.Roem. Attenuates acetaminophen-induced acute liver toxicity in HepG2 cells and mice through induction of antioxidant machinery and inhibition of inflammation. Nutrients. 8(7):431–446. https://doi.org/10.3390/nu8070431. (PMID: 10.3390/nu80704314963907)
      Kakumu A, Ninomiya M, Efdi M, Adfa M, Hayashi M, Tanaka K, Koketsu M (2014) Phytochemical analysis and antileukemic activity of polyphenolic constituents of Toona sinensis. Bioorg Med Chem Lett 24(17):4286–4290. https://doi.org/10.1016/j.bmcl.2014.07.022. (PMID: 10.1016/j.bmcl.2014.07.02225074815)
      Yan Y, Min Y, Min H, Chao C, Ying Q, Zhi H (2014) n-Butanol soluble fraction of the water extract of Chinese toon fruit ameliorated focal brain ischemic insult in rats via inhibition of oxidative stress and inflammation. J Ethnopharmacol 151(1):176–182. https://doi.org/10.1016/j.jep.2013.10.026. (PMID: 10.1016/j.jep.2013.10.02624269248)
      Chen JY, Zhu GY, Su XH, Wang R, Liu J, Liao K, Ren R, Li T, Liu L (2017) 7-deacetylgedunin suppresses inflammatory responses through activation of Keap1/Nrf2/HO-1 signaling. Oncotarget. 8(33):55051–55063. https://doi.org/10.18632/oncotarget.19017. (PMID: 10.18632/oncotarget.19017289034015589640)
      Li WZ, Wang XH, Zhang HX, Mao SM, Zhao CZ (2016) Protective effect of the n-butanol Toona sinensis seed extract on diabetic nephropathy rat kidneys. Genet Mol Res 15(1):1000. https://doi.org/10.4238/gmr.15017403. (PMID: 10.4238/gmr.15017403)
      Wang XH, Li WZ (2016) Antioxidant activity of polyphenols from Toona sinensis roem seeds and the inhibition of aldose reductase. Afr J Tradit Complement Altern Med 13(1):99–104. (PMID: 10.4314/ajtcam.v13i1.14)
      Hwang CJ, Kim YE, Son DJ, Park MH, Choi DY, Park PH, Hellström M, Han SB, Oh KW, Park EK, Hong JT (2017) Parkin deficiency exacerbate ethanol-induced dopaminergic neurodegeneration by P38 pathway dependent inhibition of autophagy and mitochondrial function. Redox Biol 11:456–468. https://doi.org/10.1016/j.redox.2016.12.008. (PMID: 10.1016/j.redox.2016.12.00828086194)
      Jiang P, Dickson DW (2018) Parkinson's disease: experimental models and reality. Acta Neuropathol 135(1):13–32. https://doi.org/10.1007/s00401-017-1788-5. (PMID: 10.1007/s00401-017-1788-529151169)
      Paxinos G, Watson C (1985) The rat brain stereotaxic coordinates. Academic Press Sydney 25:87–92.
      Shah A, Han P, Wong MY, Chang RC, Legido-Quigley C (2019) Palmitate and stearate are increased in the plasma in a 6-OHDA model of Parkinson’s disease. Metabolites 9(2):E31. https://doi.org/10.3390/metabo9020031. (PMID: 10.3390/metabo902003130781729)
      Fu W, Zheng Z, Zhuang W, Chen D, Wang X, Sun X, Wang X (2013) Neural metabolite changes in corpus striatum after rat multipotent mesenchymal stem cells transplanted in hemiparkinsonian rats by magnetic resonance spectroscopy. Int J Neurosci 123:883–891. https://doi.org/10.3109/00207454.2013.814132. (PMID: 10.3109/00207454.2013.81413223768098)
      Mansouri MT, Farbood Y, Sameri MJ, Sarkaki A, Naghizadeh B, Rafeirad M (2013) Neuroprotective effects of oral gallic acid against oxidative stress induced by 6-hydroxydopamine in rats. Food Chem 138(2–3):1028–1233. https://doi.org/10.1016/j.foodchem.2012.11.022. (PMID: 10.1016/j.foodchem.2012.11.02223411210)
      Ay M, Luo J, Langley M, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG (2017) Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson's disease. J Neurochem 141(5):766–782. https://doi.org/10.1111/jnc.14033. (PMID: 10.1111/jnc.14033283762795643047)
      Baluchnejadmojarad T, Jamali-Raeufy N, Zabihnejad S, Rabiee N, Roghani M (2017) Troxerutin exerts neuroprotection in 6-hydroxydopamine lesion rat model of Parkinson's disease: possible involvement of PI3K/ERβ signaling. Eur J Pharmacol 801:72–78. https://doi.org/10.1016/j.ejphar.2017.03.002. (PMID: 10.1016/j.ejphar.2017.03.00228284752)
      Yang YL, Cheng X, Li WH, Liu M, Wang YH, Du GH (2019) Kaempferol attenuates LPS-induced striatum injury in mice involving anti-neuroinflammation, maintaining BBB Integrity, and down-regulating the HMGB1/TLR4 pathway. Int J Mol Sci 20(3):491–501. https://doi.org/10.3390/ijms20030491. (PMID: 10.3390/ijms200304916386879)
      Tan L, Li J, Wang Y, Tan R (2019) Anti-neuroinflammatory effect of alantolactone through the suppression of the NF-κB and MAPK signaling pathways. Cells 8(7):739–760. https://doi.org/10.3390/cells8070739. (PMID: 10.3390/cells80707396678480)
      Lee Y, Lee S, Chang SC, Lee J (2019) Significant roles of neuroinflammation in Parkinson’s disease: therapeutic targets for PD prevention. Arch Pharm Res 42(5):416–425. https://doi.org/10.1007/s12272-019-01133-0. (PMID: 10.1007/s12272-019-01133-030830660)
      Oliveira-Junior MS, Pereira EP, de Amorim VCM, Reis LTC, do Nascimento RP, da Silva VDA, Costa SL (2019) Lupeol inhibits LPS-induced neuroinflammation in cerebellar cultures and induces neuroprotection associated to the modulation of astrocyte response and expression of neurotrophic and inflammatory factors. Int Immunopharmacol 70:302–312. https://doi.org/10.1016/j.intimp.2019.02.055. (PMID: 10.1016/j.intimp.2019.02.05530852286)
      de Wit NM, den Hoedt S, Martinez-Martinez P, Rozemuller AJ, Mulder MT, de Vries HE (2019) Astrocytic ceramide as possible indicator of neuroinflammation. J Neuroinflammation 16(1):48–58. https://doi.org/10.1186/s12974-019-1436-1. (PMID: 10.1186/s12974-019-1436-1308034536388480)
      Lv R, Du L, Liu X, Zhou F, Zhang Z, Zhang L (2019) Polydatin alleviates traumatic spinal cord injury by reducing microglial inflammation via regulation of iNOS and NLRP3 inflammasome pathway. Int Immunopharmacol 70:28–36. https://doi.org/10.1016/j.intimp.2019.02.006. (PMID: 10.1016/j.intimp.2019.02.00630785088)
      Singh G, Kaur A, Kaur J, Bhatti MS, Singh P, Bhatti R (2019) Bergapten inhibits chemically induced nociceptive behavior and inflammation in mice by decreasing the expression of spinal PARP, iNOS, COX-2 and inflammatory cytokines. Inflammopharmacology 27(4):749–760. https://doi.org/10.1007/s10787-019-00585-6. (PMID: 10.1007/s10787-019-00585-630953227)
      Aggarwal BB, Gupta SC, Kim JH (2012) Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 119(3):651–665. https://doi.org/10.1182/blood-2011-04-325225. (PMID: 10.1182/blood-2011-04-325225220531093265196)
      Olianas MC, Dedoni S, Onali P (2019) Inhibition of TNF-α-induced neuronal apoptosis by antidepressants acting through the lysophosphatidic acid receptor LPA1. Apoptosis 24(5–6):478–498. https://doi.org/10.1007/s10495-019-01530-2. (PMID: 10.1007/s10495-019-01530-230840161)
      Li N, Liu BW, Ren WZ, Liu JX, Li SN, Fu SP, Zeng YL, Xu SY, Yan X, Gao YJ, Liu DF, Wang W (2016) GLP-2 Attenuates LPS-induced inflammation in BV-2 cells by inhibiting ERK1/2, JNK1/2 and NF-κB signaling pathways. Int J Mol Sci 17(2):190–200. https://doi.org/10.3390/ijms17020190. (PMID: 10.3390/ijms17020190268612864783924)
      Ying H, Wang Y, Gao Z, Zhang Q (2019) Long non-coding RNA activated by transforming growth factor beta alleviates lipopolysaccharide-induced inflammatory injury via regulating microRNA-223 in ATDC5 cells. Int Immunopharmacol 69:313–320. https://doi.org/10.1016/j.intimp.2019.01.056. (PMID: 10.1016/j.intimp.2019.01.05630771739)
      Pan Z, Niu Y, Liang Y, Zhang X, Dong M (2016) β-Ecdysterone protects SH-SY5Y cells against 6-hydroxydopamine-induced apoptosis via mitochondria-dependent mechanism: involvement of p38 (MAPK)-p53 signaling pathway. Neurotox Res 30(3):453–466. https://doi.org/10.1007/s12640-016-9631-7. (PMID: 10.1007/s12640-016-9631-727229883)
      Liu Q, Zhang Y, Liu S, Liu Y, Yang X, Liu G, Shimizu T, Ikenaka K, Fan K, Ma J (2019) Cathepsin C promotes microglia M1 polarization and aggravates neuroinflammation via activation of Ca 2+ -dependent PKC/p38MAPK/NF-κB pathway. J Neuroinflammation 16(1):10–27. https://doi.org/10.1186/s12974-019-1398-3. (PMID: 10.1186/s12974-019-1398-3306511056335804)
      Giovannini MG, Scali C, Prosperi C, Bellucci A, Vannucchi MG, Rosi S, Pepeu G, Casamenti F (2002) Beta-amyloid-induced inflammation and cholinergic hypofunction in the rat brain in vivo: involvement of the p38 MAPK pathway. Neurobiol Dis 11(2):257–274. https://doi.org/10.1006/nbdi.2002.0538. (PMID: 10.1006/nbdi.2002.053812505419)
      Choi WS, Eom DS, Han BS, Kim WK, Han BH, Choi EJ, Oh TH, Markelonis GJ, Cho JW, Oh YJ (2004) Phosphorylation of p38 MAPK induced by oxidative stress is linked to activation of both caspase-8-and-9-mediated apoptotic pathways in domaminergic neurons. J Biol Chem 279(19):20451–20460. https://doi.org/10.1074/jbc.M311164200. (PMID: 10.1074/jbc.M31116420014993216)
      Yan X, Liu DF, Zhang XY, Liu D, Xu SY, Chen GX, Huang BX, Ren WZ, Wang W, Fu SP, Liu JX (2017) Vanillin protects dopaminergic neurons against inflammation-mediated cell death by inhibiting ERK1/2, P38 and the NF-κB signaling pathway. Int J Mol Sci 18(2):389–400. https://doi.org/10.3390/ijms18020389. (PMID: 10.3390/ijms180203895343924)
      Wang CC, Tsai YJ, Hsieh YC, Lin RJ, Lin CL (2014) The aqueous extract from Toona sinensis leaves inhibits microglia-mediated neuroinflammation. Kaohsiung J Med Sci 30(2):73–81. https://doi.org/10.1016/j.kjms.2013.09.012. (PMID: 10.1016/j.kjms.2013.09.01224444536)
      Yang HL, Huang PJ, Liu YR, Kumar KJ, Hsu LS, Lu TL, Chia YC, Takajo T, Kazunori A, Hseu YC (2014) Toona sinensis inhibits LPS-induced inflammation and migration in vascular smooth muscle cells via suppression of reactive oxygen species and NF-κB signaling pathway. Oxid Med Cell Longev 2014:901315. https://doi.org/10.1155/2014/901315. (PMID: 10.1155/2014/901315247239973960752)
    • Grant Information:
      81870943 National Natural Science Foundation of China; ZR2014HL043 Natural Science Foundation of Shandong Province
    • Contributed Indexing:
      Keywords: Neuroinflammation; Parkinson’s disease; Polyphenols from toona sinensis seeds; p38 MAPK
    • Accession Number:
      0 (Anti-Inflammatory Agents)
      0 (Polyphenols)
      0 (Tumor Necrosis Factor-alpha)
      8HW4YBZ748 (Oxidopamine)
      EC 1.14.13.39 (Nitric Oxide Synthase Type II)
      EC 1.14.13.39 (Nos2 protein, rat)
      EC 1.14.99.1 (Cyclooxygenase 2)
      EC 1.14.99.1 (Ptgs2 protein, rat)
    • Publication Date:
      Date Created: 20200620 Date Completed: 20210608 Latest Revision: 20210617
    • Publication Date:
      20221213
    • Accession Number:
      10.1007/s11064-020-03067-2
    • Accession Number:
      32556929