Ultrafine silicon dioxide nanoparticles cause lung epithelial cells apoptosis via oxidative stress-activated PI3K/Akt-mediated mitochondria- and endoplasmic reticulum stress-dependent signaling pathways.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • Subject Terms:
    • Abstract:
      Silicon dioxide nanoparticles (SiO 2 NPs) are widely applied in industry, chemical, and cosmetics. SiO 2 NPs is known to induce pulmonary toxicity. In this study, we investigated the molecular mechanisms of SiO 2 NPs on pulmonary toxicity using a lung alveolar epithelial cell (L2) model. SiO 2 NPs, which primary particle size was 12 nm, caused the accumulation of intracellular Si, the decrease in cell viability, and the decrease in mRNAs expression of surfactant, including surfactant protein (SP)-A, SP-B, SP-C, and SP-D. SiO 2 NPs induced the L2 cell apoptosis. The increases in annexin V fluorescence, caspase-3 activity, and protein expression of cleaved-poly (ADP-ribose) polymerase (PARP), cleaved-caspase-9, and cleaved-caspase-7 were observed. The SiO 2 NPs induced caspase-3 activity was reversed by pretreatment of caspase-3 inhibitor Z-DEVD-FMK. SiO 2 NPs exposure increased reactive oxygen species (ROS) production, decreased mitochondrial transmembrane potential, and decreased protein and mRNA expression of Bcl-2 in L2 cells. SiO 2 NPs increased protein expression of cytosolic cytochrome c and Bax, and mRNAs expression of Bid, Bak, and Bax. SiO 2 NPs could induce the endoplasmic reticulum (ER) stress-related signals, including the increase in CHOP, XBP-1, and phospho-eIF2α protein expressions, and the decrease in pro-caspase-12 protein expression. SiO 2 NPs increased phosphoinositide 3-kinase (PI3K) activity and AKT phosphorylation. Both ROS inhibitor N-acetyl-l-cysteine (NAC) and PI3K inhibitor LY294002 reversed SiO 2 NPs-induced signals described above. However, the LY294002 could not inhibit SiO 2 NPs-induced ROS generation. These findings demonstrated first time that SiO 2 NPs induced L2 cell apoptosis through ROS-regulated PI3K/AKT signaling and its downstream mitochondria- and ER stress-dependent signaling pathways.
    • References:
      Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci 100, 13549–13554 (2003). (PMID: 1459771910.1073/pnas.2232479100)
      Bharali, D. J. et al. Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc Natl Acad Sci USA 102, 11539–11544 (2005). (PMID: 1605170110.1073/pnas.0504926102)
      Gemeinhart, R. A., Luo, D. & Saltzman, W. M. Cellular fate of a modular DNA delivery system mediated by silica nanoparticles. Biotechnol Prog 21, 532–537 (2005). (PMID: 1580179410.1021/bp049648w)
      Venkatesan, N., Yoshimitsu, J., Ito, Y., Shibata, N. & Takada, K. Liquid filled nanoparticles as a drug delivery tool for protein therapeutics. Biomaterials 26, 7154–7163 (2005). (PMID: 1596749310.1016/j.biomaterials.2005.05.012)
      Napierska, D., Thomassen, L. C., Lison, D., Martens, J. A. & Hoet, P. H. The nanosilica hazard: another variable entity. Part Fibre Toxicol 7, 39 (2010). (PMID: 21126379301486810.1186/1743-8977-7-39)
      Oberdorster, G. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267, 89–105 (2010). (PMID: 2005964610.1111/j.1365-2796.2009.02187.x)
      Fede, C. et al. The toxicity outcome of silica nanoparticles (Ludox(R)) is influenced by testing techniques and treatment modalities. Anal Bioanal Chem 404, 1789–1802 (2012). (PMID: 23053168346231210.1007/s00216-012-6246-6)
      Murugadoss, S. et al. Toxicology of silica nanoparticles: an update. Arch Toxicol 91, 2967–3010 (2017). (PMID: 28573455556277110.1007/s00204-017-1993-y)
      Liljenström, C., Lazarevic, D. & Finnveden, G. Silicon-based nanomaterials in a life-cycle perspective, including a case study on self-cleaning coatings. ISBN 978-91-7501-942-0 (2013).
      Vance, M. E. et al. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6, 1769–1780 (2015). (PMID: 26425429457839610.3762/bjnano.6.181)
      Leung, C. C., Yu, I. T. & Chen, W. Silicosis. Lancet 379, 2008–2018 (2012). (PMID: 2253400210.1016/S0140-6736(12)60235-9)
      National Institute for Occupational Safety and Health (NIOSH). Health effects of occupational exposure to respirable crystalline silica. Cincinnati, OH: Department of Health and Human Services. 129 (2002).
      Sanchez, A. et al. Silica nanoparticles inhibit the cation channel TRPV4 in airway epithelial cells. Part Fibre Toxicol 14, 43 (2017). (PMID: 29100528567052910.1186/s12989-017-0224-2)
      Al-Rawi, M., Diabate, S. & Weiss, C. Uptake and intracellular localization of submicron and nano-sized SiO(2) particles in HeLa cells. Arch Toxicol 85, 813–826 (2011). (PMID: 2124047810.1007/s00204-010-0642-5)
      Kettiger, H., Schipanski, A., Wick, P. & Huwyler, J. Engineered nanomaterial uptake and tissue distribution: from cell to organism. Int J Nanomedicine 8, 3255–3269 (2013). (PMID: 240235143767489)
      Ahamed, M. Silica nanoparticles-induced cytotoxicity, oxidative stress and apoptosis in cultured A431 and A549 cells. Hum Exp Toxicol 32, 186–195 (2013). (PMID: 2331527710.1177/0960327112459206)
      Li, W. et al. Polysaccharide FMP-1 from Morchella esculenta attenuates cellular oxidative damage in human alveolar epithelial A549 cells through PI3K/AKT/Nrf2/HO-1 pathway. Int J Biol Macromol 120, 865–875 (2018). (PMID: 3017196010.1016/j.ijbiomac.2018.08.148)
      Chetram, M. A. et al. ROS-mediated activation of AKT induces apoptosis via pVHL in prostate cancer cells. Mol Cell Biochem 376, 63–71 (2013). (PMID: 23315288357804310.1007/s11010-012-1549-7)
      Nogueira, V. et al. Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell 14, 458–470 (2008). (PMID: 19061837303866510.1016/j.ccr.2008.11.003)
      Packer, L. & Fuehr, K. Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature 267, 423–425 (1977). (PMID: 87635610.1038/267423a0)
      Chen, Y. W., Yang, Y. T., Hung, D. Z., Su, C. C. & Chen, K. L. Paraquat induces lung alveolar epithelial cell apoptosis via Nrf-2-regulated mitochondrial dysfunction and ER stress. Arch Toxicol 86, 1547–1558 (2012). (PMID: 2267874210.1007/s00204-012-0873-8)
      Ahmad, J. et al. Apoptosis induction by silica nanoparticles mediated through reactive oxygen species in human liver cell line HepG2. Toxicol Appl Pharmacol 259, 160–168 (2012). (PMID: 2224584810.1016/j.taap.2011.12.020)
      Ahamed, M., Akhtar, M. J., Khan, M. A. M., Alhadlaq, H. A. & Aldalbahi, A. Nanocubes of indium oxide induce cytotoxicity and apoptosis through oxidative stress in human lung epithelial cells. Colloids Surf B Biointerfaces 156, 157–164 (2017). (PMID: 2852735910.1016/j.colsurfb.2017.05.020)
      Christen, V. & Fent, K. Silica nanoparticles induce endoplasmic reticulum stress response and activate mitogen activated kinase (MAPK) signalling. Toxicol Rep 3, 832–840 (2016). (PMID: 28959611561620410.1016/j.toxrep.2016.10.009)
      Huo, L. et al. Silver nanoparticles activate endoplasmic reticulum stress signaling pathway in cell and mouse models: The role in toxicity evaluation. Biomaterials 61, 307–315 (2015). (PMID: 2602465110.1016/j.biomaterials.2015.05.029)
      Yang, X. et al. Endoplasmic reticulum stress and oxidative stress are involved in ZnO nanoparticle-induced hepatotoxicity. Toxicol Lett 234, 40–49 (2015). (PMID: 256806942568069410.1016/j.toxlet.2015.02.004)
      Yu, K. N. et al. Inhalation of titanium dioxide induces endoplasmic reticulum stress-mediated autophagy and inflammation in mice. Food Chem Toxicol 85, 106–113 (2015). (PMID: 2625335410.1016/j.fct.2015.08.001)
      Pallepati, P. & Averill-Bates, D. A. Activation of ER stress and apoptosis by hydrogen peroxide in HeLa cells: protective role of mild heat preconditioning at 40 degrees C. Biochim Biophys Acta 1813, 1987–1999 (2011). (PMID: 218756242187562410.1016/j.bbamcr.2011.07.021)
      Oberdorster, G., Oberdorster, E. & Oberdorster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113, 823–839 (2005). (PMID: 16002369125764210.1289/ehp.7339)
      Arts, J. H., Muijser, H., Duistermaat, E., Junker, K. & Kuper, C. F. Five-day inhalation toxicity study of three types of synthetic amorphous silicas in Wistar rats and post-exposure evaluations for up to 3 months. Food Chem Toxicol 45, 1856–1867 (2007). (PMID: 1752454110.1016/j.fct.2007.04.001)
      McLaughlin, J. K., Chow, W. H. & Levy, L. S. Amorphous silica: a review of health effects from inhalation exposure with particular reference to cancer. J Toxicol Environ Health 50, 553–566 (1997). (PMID: 1527902910.1080/15287399709532054)
      Merget, R. et al. Health hazards due to the inhalation of amorphous silica. Arch Toxicol 75, 625–634 (2002). (PMID: 1187649510.1007/s002040100266)
      Winkler, H. C., Suter, M. & Naegeli, H. Critical review of the safety assessment of nano-structured silica additives in food. J Nanobiotechnology 14, 44 (2016). (PMID: 27287345490300210.1186/s12951-016-0189-6)
      Shin, J. H. et al. Subacute inhalation toxicity study of synthetic amorphous silica nanoparticles in Sprague-Dawley rats. Inhal Toxicol 29, 567–576 (2018). (PMID: 10.1080/08958378.2018.1426661)
      So, S. J., Jang, I. S. & Han, C. S. Effect of micro/nano silica particle feeding for mice. J Nanosci Nanotechnol 8, 5367–5371 (2008). (PMID: 1919845710.1166/jnn.2008.1347)
      van der Zande, M. et al. Sub-chronic toxicity study in rats orally exposed to nanostructured silica. Part Fibre Toxicol 11, 8 (2014). (PMID: 24507464392242910.1186/1743-8977-11-8)
      Xie, G., Sun, J., Zhong, G., Shi, L. & Zhang, D. Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch Toxicol 84, 183–190 (2010). (PMID: 1993670810.1007/s00204-009-0488-x)
      Bhattacharya, K., Naha, P. C., Naydenova, I., Mintova, S. & Byrne, H. J. Reactive oxygen species mediated DNA damage in human lung alveolar epithelial (A549) cells from exposure to non-cytotoxic MFI-type zeolite nanoparticles. Toxicol Lett 215, 151–160 (2012). (PMID: 2310333810.1016/j.toxlet.2012.10.007)
      Asweto, C. O. et al. Cellular pathways involved in silica nanoparticles induced apoptosis: A systematic review of in vitro studies. Environ Toxicol Pharmacol 56, 191–197 (2017). (PMID: 2895772410.1016/j.etap.2017.09.012)
      Saelens, X. et al. Toxic proteins released from mitochondria in cell death. Oncogene 23, 2861–2874 (2004). (PMID: 1507714910.1038/sj.onc.1207523)
      Chen, Y. W. et al. Methylmercury induces pancreatic beta-cell apoptosis and dysfunction. Chem Res Toxicol 19, 1080–1085 (2006). (PMID: 1691824810.1021/tx0600705)
      Iurlaro, R. & Muñoz-Pinedo, C. Cell death induced by endoplasmic reticulum stress. FEBS J 283, 2640–2652 (2016). (PMID: 2658778110.1111/febs.13598)
      Marciniak, S. J. Endoplasmic reticulum stress in lung disease. Eur Respir Rev 26, 170018 (2017). (PMID: 2865950410.1183/16000617.0018-2017)
      Huo, L. et al. Silver nanoparticles activate endoplasmic reticulum stress signaling pathway in cell and mouse models: The role in toxicity evaluation. Biomaterials 61, 307–315 (2015). (PMID: 2602465110.1016/j.biomaterials.2015.05.029)
      Dumont, A. G., Dumont, S. N. & Trent, J. C. The favorable impact of PIK3CA mutations on survival: an analysis of 2587 patients with breast cancer. Chin J Cancer 31, 327–334 (2012). (PMID: 22640628377749710.5732/cjc.012.10032)
      Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007). (PMID: 1725497010.1016/j.cell.2007.01.003)
      Akhtar, M. J. et al. Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells. Toxicology 276, 95–102 (2010). (PMID: 2065468010.1016/j.tox.2010.07.010)
      Liu, S. H., Su, C. C., Lee, K. I. & Chen, Y. W. Effects of Bisphenol A Metabolite 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene on Lung Function and Type 2 Pulmonary Alveolar Epithelial Cell Growth. Sci Rep 6, 39254 (2016). (PMID: 27982077515987510.1038/srep39254)
      Chung, Y. P. et al. Methylmercury exposure induces ROS/Akt inactivation-triggered endoplasmic reticulum stress-regulated neuronal cell apoptosis. Toxicology 425, 152245 (2019). (PMID: 3133022910.1016/j.tox.2019.152245)
      Chen, Y. W. et al. Pyrrolidine dithiocarbamate (PDTC)/Cu complex induces lung epithelial cell apoptosis through mitochondria and ER-stress pathways. Toxicol Lett 199, 333–340 (2010). (PMID: 2092055810.1016/j.toxlet.2010.09.016)
      Chen, C. M., Wang, L. F. & Yeh, T. F. Effects of maternal nicotine exposure on lung surfactant system in rats. Pediatr Pulmonol 39, 97–102 (2005). (PMID: 1553209110.1002/ppul.20122)
      Bozec, A. et al. The mitochondrial-dependent pathway is chronically affected in testicular germ cell death in adult rats exposed in utero to anti-androgens. J Endocrinol 183, 79–90 (2004). (PMID: 1552557610.1677/joe.1.05771)
    • Accession Number:
      0 (Reactive Oxygen Species)
      7631-86-9 (Silicon Dioxide)
      EC 2.7.11.1 (Proto-Oncogene Proteins c-akt)
    • Publication Date:
      Date Created: 20200620 Date Completed: 20201207 Latest Revision: 20210618
    • Publication Date:
      20221213
    • Accession Number:
      PMC7303152
    • Accession Number:
      10.1038/s41598-020-66644-z
    • Accession Number:
      32555254