Menu
×
West Ashley Library
Closed
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed
Phone: (843) 805-6888
Village Library
Closed
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed
Phone: (843) 889-3300
Otranto Road Library
Closed
Phone: (843) 572-4094
Mt. Pleasant Library
Closed
Phone: (843) 849-6161
McClellanville Library
Closed
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed
Phone: (843) 744-2489
John's Island Library
Closed
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
Closed
Phone: (843) 869-2355
Dorchester Road Library
Closed
Phone: (843) 552-6466
John L. Dart Library
Closed
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed
Phone: (843) 795-6679
Main Library
2 p.m. – 5 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Today's Hours
West Ashley Library
Closed
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed
Phone: (843) 805-6888
Village Library
Closed
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed
Phone: (843) 889-3300
Otranto Road Library
Closed
Phone: (843) 572-4094
Mt. Pleasant Library
Closed
Phone: (843) 849-6161
McClellanville Library
Closed
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed
Phone: (843) 744-2489
John's Island Library
Closed
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
Closed
Phone: (843) 869-2355
Dorchester Road Library
Closed
Phone: (843) 552-6466
John L. Dart Library
Closed
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed
Phone: (843) 795-6679
Main Library
2 p.m. – 5 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Ultrafine silicon dioxide nanoparticles cause lung epithelial cells apoptosis via oxidative stress-activated PI3K/Akt-mediated mitochondria- and endoplasmic reticulum stress-dependent signaling pathways.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Lee KI;Lee KI; Su CC; Su CC; Su CC; Fang KM; Fang KM; Wu CC; Wu CC; Wu CT; Wu CT; Chen YW; Chen YW
- Source:
Scientific reports [Sci Rep] 2020 Jun 18; Vol. 10 (1), pp. 9928. Date of Electronic Publication: 2020 Jun 18.- Publication Type:
Journal Article; Research Support, Non-U.S. Gov't- Language:
English - Source:
- Additional Information
- Source: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
- Publication Information: Original Publication: London : Nature Publishing Group, copyright 2011-
- Subject Terms: Apoptosis* ; Oxidative Stress*; Alveolar Epithelial Cells/*pathology ; Endoplasmic Reticulum Stress/*drug effects ; Mitochondria/*pathology ; Nanoparticles/*administration & dosage ; Silicon Dioxide/*pharmacology; Alveolar Epithelial Cells/drug effects ; Alveolar Epithelial Cells/metabolism ; Animals ; Cell Survival ; Cells, Cultured ; Gene Expression Regulation ; Membrane Potential, Mitochondrial/drug effects ; Mitochondria/drug effects ; Mitochondria/metabolism ; Nanoparticles/chemistry ; Phosphatidylinositol 3-Kinases/genetics ; Phosphatidylinositol 3-Kinases/metabolism ; Proto-Oncogene Proteins c-akt/genetics ; Proto-Oncogene Proteins c-akt/metabolism ; Rats ; Reactive Oxygen Species/metabolism ; Signal Transduction
- Abstract: Silicon dioxide nanoparticles (SiO
2 NPs) are widely applied in industry, chemical, and cosmetics. SiO2 NPs is known to induce pulmonary toxicity. In this study, we investigated the molecular mechanisms of SiO2 NPs on pulmonary toxicity using a lung alveolar epithelial cell (L2) model. SiO2 NPs, which primary particle size was 12 nm, caused the accumulation of intracellular Si, the decrease in cell viability, and the decrease in mRNAs expression of surfactant, including surfactant protein (SP)-A, SP-B, SP-C, and SP-D. SiO2 NPs induced the L2 cell apoptosis. The increases in annexin V fluorescence, caspase-3 activity, and protein expression of cleaved-poly (ADP-ribose) polymerase (PARP), cleaved-caspase-9, and cleaved-caspase-7 were observed. The SiO2 NPs induced caspase-3 activity was reversed by pretreatment of caspase-3 inhibitor Z-DEVD-FMK. SiO2 NPs exposure increased reactive oxygen species (ROS) production, decreased mitochondrial transmembrane potential, and decreased protein and mRNA expression of Bcl-2 in L2 cells. SiO2 NPs increased protein expression of cytosolic cytochrome c and Bax, and mRNAs expression of Bid, Bak, and Bax. SiO2 NPs could induce the endoplasmic reticulum (ER) stress-related signals, including the increase in CHOP, XBP-1, and phospho-eIF2α protein expressions, and the decrease in pro-caspase-12 protein expression. SiO2 NPs increased phosphoinositide 3-kinase (PI3K) activity and AKT phosphorylation. Both ROS inhibitor N-acetyl-l-cysteine (NAC) and PI3K inhibitor LY294002 reversed SiO2 NPs-induced signals described above. However, the LY294002 could not inhibit SiO2 NPs-induced ROS generation. These findings demonstrated first time that SiO2 NPs induced L2 cell apoptosis through ROS-regulated PI3K/AKT signaling and its downstream mitochondria- and ER stress-dependent signaling pathways. - References: Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci 100, 13549–13554 (2003). (PMID: 1459771910.1073/pnas.2232479100)
Bharali, D. J. et al. Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc Natl Acad Sci USA 102, 11539–11544 (2005). (PMID: 1605170110.1073/pnas.0504926102)
Gemeinhart, R. A., Luo, D. & Saltzman, W. M. Cellular fate of a modular DNA delivery system mediated by silica nanoparticles. Biotechnol Prog 21, 532–537 (2005). (PMID: 1580179410.1021/bp049648w)
Venkatesan, N., Yoshimitsu, J., Ito, Y., Shibata, N. & Takada, K. Liquid filled nanoparticles as a drug delivery tool for protein therapeutics. Biomaterials 26, 7154–7163 (2005). (PMID: 1596749310.1016/j.biomaterials.2005.05.012)
Napierska, D., Thomassen, L. C., Lison, D., Martens, J. A. & Hoet, P. H. The nanosilica hazard: another variable entity. Part Fibre Toxicol 7, 39 (2010). (PMID: 21126379301486810.1186/1743-8977-7-39)
Oberdorster, G. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267, 89–105 (2010). (PMID: 2005964610.1111/j.1365-2796.2009.02187.x)
Fede, C. et al. The toxicity outcome of silica nanoparticles (Ludox(R)) is influenced by testing techniques and treatment modalities. Anal Bioanal Chem 404, 1789–1802 (2012). (PMID: 23053168346231210.1007/s00216-012-6246-6)
Murugadoss, S. et al. Toxicology of silica nanoparticles: an update. Arch Toxicol 91, 2967–3010 (2017). (PMID: 28573455556277110.1007/s00204-017-1993-y)
Liljenström, C., Lazarevic, D. & Finnveden, G. Silicon-based nanomaterials in a life-cycle perspective, including a case study on self-cleaning coatings. ISBN 978-91-7501-942-0 (2013).
Vance, M. E. et al. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6, 1769–1780 (2015). (PMID: 26425429457839610.3762/bjnano.6.181)
Leung, C. C., Yu, I. T. & Chen, W. Silicosis. Lancet 379, 2008–2018 (2012). (PMID: 2253400210.1016/S0140-6736(12)60235-9)
National Institute for Occupational Safety and Health (NIOSH). Health effects of occupational exposure to respirable crystalline silica. Cincinnati, OH: Department of Health and Human Services. 129 (2002).
Sanchez, A. et al. Silica nanoparticles inhibit the cation channel TRPV4 in airway epithelial cells. Part Fibre Toxicol 14, 43 (2017). (PMID: 29100528567052910.1186/s12989-017-0224-2)
Al-Rawi, M., Diabate, S. & Weiss, C. Uptake and intracellular localization of submicron and nano-sized SiO(2) particles in HeLa cells. Arch Toxicol 85, 813–826 (2011). (PMID: 2124047810.1007/s00204-010-0642-5)
Kettiger, H., Schipanski, A., Wick, P. & Huwyler, J. Engineered nanomaterial uptake and tissue distribution: from cell to organism. Int J Nanomedicine 8, 3255–3269 (2013). (PMID: 240235143767489)
Ahamed, M. Silica nanoparticles-induced cytotoxicity, oxidative stress and apoptosis in cultured A431 and A549 cells. Hum Exp Toxicol 32, 186–195 (2013). (PMID: 2331527710.1177/0960327112459206)
Li, W. et al. Polysaccharide FMP-1 from Morchella esculenta attenuates cellular oxidative damage in human alveolar epithelial A549 cells through PI3K/AKT/Nrf2/HO-1 pathway. Int J Biol Macromol 120, 865–875 (2018). (PMID: 3017196010.1016/j.ijbiomac.2018.08.148)
Chetram, M. A. et al. ROS-mediated activation of AKT induces apoptosis via pVHL in prostate cancer cells. Mol Cell Biochem 376, 63–71 (2013). (PMID: 23315288357804310.1007/s11010-012-1549-7)
Nogueira, V. et al. Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell 14, 458–470 (2008). (PMID: 19061837303866510.1016/j.ccr.2008.11.003)
Packer, L. & Fuehr, K. Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature 267, 423–425 (1977). (PMID: 87635610.1038/267423a0)
Chen, Y. W., Yang, Y. T., Hung, D. Z., Su, C. C. & Chen, K. L. Paraquat induces lung alveolar epithelial cell apoptosis via Nrf-2-regulated mitochondrial dysfunction and ER stress. Arch Toxicol 86, 1547–1558 (2012). (PMID: 2267874210.1007/s00204-012-0873-8)
Ahmad, J. et al. Apoptosis induction by silica nanoparticles mediated through reactive oxygen species in human liver cell line HepG2. Toxicol Appl Pharmacol 259, 160–168 (2012). (PMID: 2224584810.1016/j.taap.2011.12.020)
Ahamed, M., Akhtar, M. J., Khan, M. A. M., Alhadlaq, H. A. & Aldalbahi, A. Nanocubes of indium oxide induce cytotoxicity and apoptosis through oxidative stress in human lung epithelial cells. Colloids Surf B Biointerfaces 156, 157–164 (2017). (PMID: 2852735910.1016/j.colsurfb.2017.05.020)
Christen, V. & Fent, K. Silica nanoparticles induce endoplasmic reticulum stress response and activate mitogen activated kinase (MAPK) signalling. Toxicol Rep 3, 832–840 (2016). (PMID: 28959611561620410.1016/j.toxrep.2016.10.009)
Huo, L. et al. Silver nanoparticles activate endoplasmic reticulum stress signaling pathway in cell and mouse models: The role in toxicity evaluation. Biomaterials 61, 307–315 (2015). (PMID: 2602465110.1016/j.biomaterials.2015.05.029)
Yang, X. et al. Endoplasmic reticulum stress and oxidative stress are involved in ZnO nanoparticle-induced hepatotoxicity. Toxicol Lett 234, 40–49 (2015). (PMID: 256806942568069410.1016/j.toxlet.2015.02.004)
Yu, K. N. et al. Inhalation of titanium dioxide induces endoplasmic reticulum stress-mediated autophagy and inflammation in mice. Food Chem Toxicol 85, 106–113 (2015). (PMID: 2625335410.1016/j.fct.2015.08.001)
Pallepati, P. & Averill-Bates, D. A. Activation of ER stress and apoptosis by hydrogen peroxide in HeLa cells: protective role of mild heat preconditioning at 40 degrees C. Biochim Biophys Acta 1813, 1987–1999 (2011). (PMID: 218756242187562410.1016/j.bbamcr.2011.07.021)
Oberdorster, G., Oberdorster, E. & Oberdorster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113, 823–839 (2005). (PMID: 16002369125764210.1289/ehp.7339)
Arts, J. H., Muijser, H., Duistermaat, E., Junker, K. & Kuper, C. F. Five-day inhalation toxicity study of three types of synthetic amorphous silicas in Wistar rats and post-exposure evaluations for up to 3 months. Food Chem Toxicol 45, 1856–1867 (2007). (PMID: 1752454110.1016/j.fct.2007.04.001)
McLaughlin, J. K., Chow, W. H. & Levy, L. S. Amorphous silica: a review of health effects from inhalation exposure with particular reference to cancer. J Toxicol Environ Health 50, 553–566 (1997). (PMID: 1527902910.1080/15287399709532054)
Merget, R. et al. Health hazards due to the inhalation of amorphous silica. Arch Toxicol 75, 625–634 (2002). (PMID: 1187649510.1007/s002040100266)
Winkler, H. C., Suter, M. & Naegeli, H. Critical review of the safety assessment of nano-structured silica additives in food. J Nanobiotechnology 14, 44 (2016). (PMID: 27287345490300210.1186/s12951-016-0189-6)
Shin, J. H. et al. Subacute inhalation toxicity study of synthetic amorphous silica nanoparticles in Sprague-Dawley rats. Inhal Toxicol 29, 567–576 (2018). (PMID: 10.1080/08958378.2018.1426661)
So, S. J., Jang, I. S. & Han, C. S. Effect of micro/nano silica particle feeding for mice. J Nanosci Nanotechnol 8, 5367–5371 (2008). (PMID: 1919845710.1166/jnn.2008.1347)
van der Zande, M. et al. Sub-chronic toxicity study in rats orally exposed to nanostructured silica. Part Fibre Toxicol 11, 8 (2014). (PMID: 24507464392242910.1186/1743-8977-11-8)
Xie, G., Sun, J., Zhong, G., Shi, L. & Zhang, D. Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch Toxicol 84, 183–190 (2010). (PMID: 1993670810.1007/s00204-009-0488-x)
Bhattacharya, K., Naha, P. C., Naydenova, I., Mintova, S. & Byrne, H. J. Reactive oxygen species mediated DNA damage in human lung alveolar epithelial (A549) cells from exposure to non-cytotoxic MFI-type zeolite nanoparticles. Toxicol Lett 215, 151–160 (2012). (PMID: 2310333810.1016/j.toxlet.2012.10.007)
Asweto, C. O. et al. Cellular pathways involved in silica nanoparticles induced apoptosis: A systematic review of in vitro studies. Environ Toxicol Pharmacol 56, 191–197 (2017). (PMID: 2895772410.1016/j.etap.2017.09.012)
Saelens, X. et al. Toxic proteins released from mitochondria in cell death. Oncogene 23, 2861–2874 (2004). (PMID: 1507714910.1038/sj.onc.1207523)
Chen, Y. W. et al. Methylmercury induces pancreatic beta-cell apoptosis and dysfunction. Chem Res Toxicol 19, 1080–1085 (2006). (PMID: 1691824810.1021/tx0600705)
Iurlaro, R. & Muñoz-Pinedo, C. Cell death induced by endoplasmic reticulum stress. FEBS J 283, 2640–2652 (2016). (PMID: 2658778110.1111/febs.13598)
Marciniak, S. J. Endoplasmic reticulum stress in lung disease. Eur Respir Rev 26, 170018 (2017). (PMID: 2865950410.1183/16000617.0018-2017)
Huo, L. et al. Silver nanoparticles activate endoplasmic reticulum stress signaling pathway in cell and mouse models: The role in toxicity evaluation. Biomaterials 61, 307–315 (2015). (PMID: 2602465110.1016/j.biomaterials.2015.05.029)
Dumont, A. G., Dumont, S. N. & Trent, J. C. The favorable impact of PIK3CA mutations on survival: an analysis of 2587 patients with breast cancer. Chin J Cancer 31, 327–334 (2012). (PMID: 22640628377749710.5732/cjc.012.10032)
Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007). (PMID: 1725497010.1016/j.cell.2007.01.003)
Akhtar, M. J. et al. Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells. Toxicology 276, 95–102 (2010). (PMID: 2065468010.1016/j.tox.2010.07.010)
Liu, S. H., Su, C. C., Lee, K. I. & Chen, Y. W. Effects of Bisphenol A Metabolite 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene on Lung Function and Type 2 Pulmonary Alveolar Epithelial Cell Growth. Sci Rep 6, 39254 (2016). (PMID: 27982077515987510.1038/srep39254)
Chung, Y. P. et al. Methylmercury exposure induces ROS/Akt inactivation-triggered endoplasmic reticulum stress-regulated neuronal cell apoptosis. Toxicology 425, 152245 (2019). (PMID: 3133022910.1016/j.tox.2019.152245)
Chen, Y. W. et al. Pyrrolidine dithiocarbamate (PDTC)/Cu complex induces lung epithelial cell apoptosis through mitochondria and ER-stress pathways. Toxicol Lett 199, 333–340 (2010). (PMID: 2092055810.1016/j.toxlet.2010.09.016)
Chen, C. M., Wang, L. F. & Yeh, T. F. Effects of maternal nicotine exposure on lung surfactant system in rats. Pediatr Pulmonol 39, 97–102 (2005). (PMID: 1553209110.1002/ppul.20122)
Bozec, A. et al. The mitochondrial-dependent pathway is chronically affected in testicular germ cell death in adult rats exposed in utero to anti-androgens. J Endocrinol 183, 79–90 (2004). (PMID: 1552557610.1677/joe.1.05771) - Accession Number: 0 (Reactive Oxygen Species)
7631-86-9 (Silicon Dioxide)
EC 2.7.11.1 (Proto-Oncogene Proteins c-akt) - Publication Date: Date Created: 20200620 Date Completed: 20201207 Latest Revision: 20210618
- Publication Date: 20221213
- Accession Number: PMC7303152
- Accession Number: 10.1038/s41598-020-66644-z
- Accession Number: 32555254
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.