Phloem sap in Cretaceous ambers as abundant double emulsions preserving organic and inorganic residues.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • Subject Terms:
    • Abstract:
      Fossilized remains preserved in amber provide abundant data on the paleobiota surrounding the resin-producing plants, but relatively scarcer information about the resinous sources themselves. Here, dark pseudoinclusions in kidney-shaped amber pieces from the Early Cretaceous (Albian) amber from Spain are studied. This type of fossilized remain, abundant in Cretaceous ambers, was first interpreted as fossilized vacuole-bearing microorganisms, but later regarded as artifactual and probably secreted by the resinous trees, although their origin remained unclear. Using complementary microscopy (light, electron, confocal), spectroscopy (infrared, micro-Raman), mass spectrometry and elemental analysis techniques, we demonstrate that the pseudoinclusions correspond to droplets of phloem sap containing amber spheroids and preserving both organic and inorganic residues consistent with degraded components from the original sap. The amber pieces containing pseudoinclusions are fossilized, resin-in-sap-in-resin double emulsions, showing banding patterns with differential content of resin-in-sap emulsion droplets. Our findings represent the first time fossilized phloem sap, 105 million years old, has been recognized and characterized, and open new lines of paleontological research with taxonomic, taphonomic, physiological and ecological implications.
    • References:
      Labandeira, C. C. Amber. In Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization (eds. Laflamme, M., Schiffbauer, J. D. & Darroch S. A. F.), Paleontol. Soc. Pap. 20, 163–216 (Cambridge University Press, Cambridge, 2014).
      Seyfullah, L. J. et al. Production and preservation of resins – past and present. Biol. Rev. 93, 1684–1714 (2018). (PMID: 2972660910.1111/brv.12414)
      Martínez-Delclòs, X., Briggs, D. E. G. & Peñalver, E. Taphonomy of insects in carbonates and amber. Palaeogeogr. Palaeoclimatol. Palaeoecol. 203, 19–64 (2004). (PMID: 10.1016/S0031-0182(03)00643-6)
      Solórzano-Kraemer, M. M. et al. Arthropods in modern resins reveal if amber accurately recorded forest arthropod communities. Proc. Natl. Acad. Sci. USA 115, 6739–6744 (2018). (PMID: 2973565310.1073/pnas.1802138115)
      Schmidt, A. R. et al. Marine microorganisms as amber inclusions: insights from coastal forests of New Caledonia. Foss. Rec. 21, 213–221 (2018). (PMID: 10.5194/fr-21-213-2018)
      Masure, E., Dejax, J. & De Ploëg, G. Blowin’ in the wind... 100 Ma old multi-staged dinoflagellate with sexual fusion trapped in amber: Marine-freshwater transition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 388, 128–144 (2013).
      Schönborn, W., Dörfelt, H., Foissner, W., Krienitz, L. & Schäfer, U. Fossilized microcenosis in Triassic amber. J. Eukaryot. Microbiol. 46, 571–584 (1999). (PMID: 10.1111/j.1550-7408.1999.tb05133.x)
      Ascaso, C., Wierzchos, J., Corral, C., López, R. & Alonso, J. New applications of light and electron microscopic techniques for the study of microbiological inclusions in amber. J. Paleontol. 77, 1182–1192 (2003). (PMID: 10.1666/0022-3360(2003)077<1182:NAOLAE>2.0.CO;2)
      Ascaso, C. et al. Fossil protists and fungi in amber and rock substrates. Micropaleontology 51, 59–72 (2005). (PMID: 10.2113/51.1.59)
      Martín-González, A., Wierzchos, J., Gutiérrez, J. C., Alonso, J. & Ascaso, C. Morphological stasis on protists in Lower Cretaceous amber. Protists 159, 251–257 (2008). (PMID: 10.1016/j.protis.2007.08.006)
      Martín-González, A., Wierzchos, J., Gutiérrez, J. C., Alonso, J. & Ascaso, C. Double fossilization in eukaryotic microorganisms from Lower Cretaceous amber. BMC Biol. 7, 1–11 (2009). (PMID: 10.1186/1741-7007-7-9)
      Girard, V. & Adl, S. M. Amber microfossils: On the validity of species concept. C. R. Palevol 10, 189–200 (2011). (PMID: 10.1016/j.crpv.2010.11.002)
      Girard, V., Néraudeau, D., Adl, S. M. & Breton, G. Protist-like inclusions in amber, as evidenced by Charentes amber. Eur. J. Protistol. 47, 59–66 (2011). (PMID: 2127671910.1016/j.ejop.2010.12.003)
      Girard, V. et al. The Cenomanian amber of Fourtou (Aude, Southern France): Taphonomy and palaeoecological implications. Ann. Paleontol. 99, 301–315 (2013). (PMID: 10.1016/j.annpal.2013.06.002)
      Quinney, A., Mays, C., Stilwell, J. D., Zelenitsky, D. K. & Therrien, F. The range of bioinclusions and pseudoinclusions preserved in a new Turonian (~90 Ma) amber occurrence from Southern Australia. Plos One 10, 1–19 (2015). (PMID: 10.1371/journal.pone.0121307)
      Thiel, V. et al. Microbe‐like inclusions in tree resins and implications for the fossil record of protists in amber. Geobiology 14, 364–373 (2016). (PMID: 2702751910.1111/gbi.12180)
      Helm, O. Notes on amber. XVI. Ueber Birmit, ein in Oberbirma vorkommendes fossiles Harz. Schr. Naturf. Ges. Danzig NF 8, 63–66 (1894).
      Brasier, M. D., Cotton, L. & Yenney, I. First report of amber with spider webs and microbial inclusions from the earliest Cretaceous (c. 140 Ma) of Hastings. Sussex. J. Geol. Soc. London 166, 989–997 (2009). (PMID: 10.1144/0016-76492008-158)
      Najarro, M. et al. Unusual concentration of Early Albian arthropod-bearing amber in the Basque-Cantabrian Basin (El Soplao, Cantabria, Northern Spain): Palaeoenvironmental and palaeobiological implications. Geol. Acta 7, 363–387 (2009).
      Menor-Salván, C. et al. Terpenoids in extracts of Lower Cretaceous ambers from the Basque Cantabrian Basin (El Soplao, Cantabria, Spain): Paleochemotaxonomic aspects. Org. Geochem. 41, 1089–1103 (2010). (PMID: 10.1016/j.orggeochem.2010.06.013)
      Peñalver, E. et al. Long-proboscid flies as pollinators of Cretaceous gymnosperms. Curr. Biol. 25, 1917–1923 (2015). (PMID: 2616678110.1016/j.cub.2015.05.062)
      Speranza, M., Ascaso, C., Delclòs, X. & Peñalver, E. Cretaceous mycelia preserving fungal polysaccharides: taphonomic and paleoecological potential of microorganisms preserved in fossil resins. Geol. Acta 13, 363–385 (2015).
      Pereira, R., de Souza-Carvalho, I., Simoneit, B. R. T. & de Almeida-Azevedo, D. Molecular composition and chemosystematic aspects of Cretaceous amber from the Amazonas, Araripe and Recôncavo basins, Brazil. Org. Geochem. 40, 863–875 (2009). (PMID: 10.1016/j.orggeochem.2009.05.002)
      Alonso, J. et al. A new fossil resin with biological inclusions in Lower Cretaceous deposits from Álava (Northern Spain, Basque-Cantabrian Basin). J. Paleontol. 74, 158–178 (2000). (PMID: 10.1017/S0022336000031334)
      Schmidt, A. R. et al. Amber inclusions from New Zealand. Gondwana Res. 56, 135–146 (2018). (PMID: 10.1016/j.gr.2017.12.003)
      Rao, Z. F. et al. Natural amber, copal resin and colophony investigated by UV-VIS, infrared and Raman spectrum. Sci. China Phys. Mech. 56, 1598–1602 (2013). (PMID: 10.1007/s11433-013-5144-z)
      Naglik, B. et al. Fossilization history of fossil resin from Jambi Province (Sumatra, Indonesia) based on physico-chemical studies. Minerals 8, 1–13 (2018). (PMID: 10.3390/min8030095)
      Leal-Calderon, F., Schmitt, V. & Bibette, J. Emulsion Science—Basic Principles (Springer, New York, 2007).
      Florence, A. T. & Whitehill, D. Some features of breakdown in water-in-oil-in-water multiple emulsions. J. Colloid Interf. Sci. 79, 243–256 (1981). (PMID: 10.1016/0021-9797(81)90066-7)
      Saint Martin, J. P. & Saint Martin, S. Exquisite preservation of a widespread filamentous microorganism in French Cretaceous ambers: Crucial for revising a controversial fossil. C. R. Palevol 17, 415–434 (2018). (PMID: 10.1016/j.crpv.2017.05.003)
      Hijaz, F. & Killiny, N. Collection and chemical composition of phloem sap from Citrus sinensis L. Osbeck (Sweet Orange). Plos One 9, 1–11 (2014). (PMID: 10.1371/journal.pone.0101830)
      Góral, J. Fourier-transform Raman spectroscopy of carbohydrates. Curr. Top. Biophys. 16, 33–47 (1990).
      De Gelder, J., De Gussem, K., Vandenabeele, P. & Moens, L. Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 38, 1133–1147 (2007). (PMID: 10.1002/jrs.1734)
      Rodríguez-Celma, J., Ceballos-Laita, L., Grusak, M. A., Abadía, J. & López-Millán, A. Plant fluid proteomics: Delving into the xylem sap, phloem sap and apoplastic fluid proteomes. Biochim. Biophys. Acta 1864, 991–1002 (2016). (PMID: 2703303110.1016/j.bbapap.2016.03.014)
      Dinant, S., Bonnemain, J. L., Girousse, C. & Kehr, J. Phloem sap intricacy and interplay with aphid feeding. C. R. Biol. 333, 504–515 (2010). (PMID: 2054116210.1016/j.crvi.2010.03.008)
      Liu, D. D., Chao, W. M. & Turgeon, R. Transport of sucrose, not hexose, in the phloem. J. Exp. Bot. 63, 4315–4320 (2012). (PMID: 22553289339845610.1093/jxb/ers127)
      Steckel, A. & Schlosser, G. An organic chemist’s guide to electrospray mass spectrometric structure elucidation. Molecules 24, 611, https://doi.org/10.3390/molecules24030611 (2019). (PMID: 10.3390/molecules240306116384780)
      Bogdasarov, M. A. Mineralogy of fossil resins in Northern Eurasia. Geol. Ore Deposits 49, 630–637 (2007). (PMID: 10.1134/S1075701507070215)
      Aquilina, L. et al. Amber inorganic geochemistry: New insights into the environmental processes in a Cretaceous forest of France. Palaeogeogr. Palaeoclimatol. Palaeoecol. 369, 220–227 (2013). (PMID: 10.1016/j.palaeo.2012.10.023)
      Peuke, A. D., Rokitta, M., Zimmermann, U., Schreiber, L. & Haase, A. Simultaneous measurement of water flow velocity and solute transport in xylem and phloem of adult plants of Ricinus communis over a daily time course by nuclear magnetic resonance spectrometry. Plant Cell Environ. 24, 491–503 (2001). (PMID: 10.1046/j.1365-3040.2001.00704.x)
      Zeng, Q. L. et al. Aluminum could be transported via phloem in Camellia oleifera Abel. Tree Physiol. 33, 96–105 (2012). (PMID: 2319297510.1093/treephys/tps117)
      Buchberger, W., Falk, H., Katzmayr, M. U. & Richter, A. E. On the chemistry of Baltic amber inclusion droplets. Mh. Chem. 128, 177–181 (1997).
      Chekryzhov, I. Y., Nechaev, V. P. & Kononov, V. V. Blue-fluorescing amber from Cenozoic lignite, eastern Sikhote-Alin, Far East Russia: Preliminary results. Int. J. Coal Geol. 132, 6–12 (2014). (PMID: 10.1016/j.coal.2014.07.013)
      Bellani, V., Giulotto, E., Linati, L. & Sacchi, D. Origin of the fluorescence in Dominican amber. J. Appl. Phys. 97, 16101–16102 (2005). (PMID: 10.1063/1.1829395)
      Bechtel, A., Chekryzhov, I. Y., Nechaev, V. P. & Kononov, V. V. Hydrocarbon composition of Russian amber from the Voznovo lignite deposit and Sakhalin Island. Int. J. Coal Geol. 167, 176–183 (2016). (PMID: 10.1016/j.coal.2016.10.005)
      Roshchina, V. V., Kuchin, A. V. & Yashin, V. A. Application of autofluorescence for analysis of medicinal plants. Int. J. Spectrosc. 2017, ID 7159609 (2017). (PMID: 10.1155/2017/7159609)
      Pedrós, R., Moya, I., Goulasb, Y. & Jacquemoude, S. Chlorophyll fluorescence emission spectrum inside a leaf. Photochem. Photobiol. S. 7, 498–502 (2008). (PMID: 10.1039/b719506k)
      Delgado-Vargas, F., Jiménez, A. R. & Paredes-López, O. Natural pigments: carotenoids, anthocyanins, and betalains - characteristics, biosynthesis, processing, and stability. Crit. Rev. Food Sci. 40, 173–289 (2000). (PMID: 10.1080/10408690091189257)
      Lev-Yadun, S. & Gould, K. S. Role of Anthocyanins in Plant Defence. In Anthocyanins. Biosynthesis, Functions, and Applications (eds Gould, K., Davies, K. M. & Winefield, C.), 21–48 (Springer, New York, 2009).
      Masson, G., Baumes, R., Puech, J. L. & Razungles, A. Demonstration of the presence of carotenoids in wood: quantitative study of cooperage oak. J. Agr. Food Chem. 45, 1649–1652 (1997). (PMID: 10.1021/jf960668q)
    • Accession Number:
      0 (Amber)
      0 (Emulsions)
    • Publication Date:
      Date Created: 20200618 Date Completed: 20201208 Latest Revision: 20210616
    • Publication Date:
      20231215
    • Accession Number:
      PMC7297994
    • Accession Number:
      10.1038/s41598-020-66631-4
    • Accession Number:
      32546844