Human cytomegalovirus pp65 peptide-induced autoantibodies cross-reacts with TAF9 protein and induces lupus-like autoimmunity in BALB/c mice.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • Subject Terms:
    • Abstract:
      Human cytomegalovirus (HCMV) has been linked to the triggering of systemic lupus erythematosus (SLE). We proposed that B cell epitope region of HCMV phosphoprotein 65 (HCMVpp65) 422-439 mimics an endogenous antigen and initiates lupus-like autoimmunity. Amino acid homology between HCMVpp65 422-439 and TAF9 134-144 (TATA-box binding protein associated factor 9, TAF9) was investigated using a similarity search in NCBI protein BLAST program (BLASTP). A murine model was used to confirm their antigenicity and ability to induce lupus-like symptoms. HCMVpp65 422-439 induced immune responses with the presence of specific antibodies against HCMVpp65 422-439 and TAF9 134-144 , as well as anti-nuclear and anti-double-stranded (ds)DNA antibodies that are characteristic of SLE. In addition, the majority of HCMVpp65 422-439 and TAF9 134-144 immunized mice developed proteinuria, and their renal pathology revealed glomerulonephritis with typical abnormalities, such as mesangial hypercellularity and immune complex deposition. Immunoglobulin eluted from the glomeruli of HCMVpp65 422-439 immunized mice showed cross-reactivity with TAF9 134-144 and dsDNA. Increased anti-TAF9 antibody activity was also observed in the sera from SLE patients compared with healthy people and disease controls. Molecular mimicry between HCMVpp65 peptide and host protein has the potential to drive lupus-like autoimmunity. This proof-of-concept study highlights the mechanisms underlying the link between HCMV infection and the induction of SLE.
    • References:
      Rider, J. R., Ollier, W. E., Lock, R. J., Brookes, S. T. & Pamphilon, D. H. Human cytomegalovirus infection and systemic lupus erythematosus. Clin Exp Rheumatol 15, 405–409 (1997). (PMID: 9272302)
      Curtis, H. A., Singh, T. & Newkirk, M. M. Recombinant cytomegalovirus glycoprotein gB (UL55) induces an autoantibody response to the U1-70 kDa small nuclear ribonucleoprotein. Eur J Immunol 29, 3643–3653, doi:10.1002/(SICI)1521-4141(199911)29:11<3643::AID-IMMU3643>3.0.CO;2-J (1999).
      Fujinami, R. S., Nelson, J. A., Walker, L. & Oldstone, M. B. Sequence homology and immunologic cross-reactivity of human cytomegalovirus with HLA-DR beta chain: a means for graft rejection and immunosuppression. J Virol 62, 100–105 (1988). (PMID: 10.1128/JVI.62.1.100-105.1988)
      Nawata, M. et al. Possible triggering effect of cytomegalovirus infection on systemic lupus erythematosus. Scand J Rheumatol 30, 360–362, https://doi.org/10.1080/030097401317148570 (2001). (PMID: 10.1080/03009740131714857011846056)
      Perez-Mercado, A. E. & Vila-Perez, S. Cytomegalovirus as a trigger for systemic lupus erythematosus. J Clin Rheumatol 16, 335–337, https://doi.org/10.1097/RHU.0b013e3181f4cf52 (2010). (PMID: 10.1097/RHU.0b013e3181f4cf5220859222)
      Blasius, A. L., Cella, M., Maldonado, J., Takai, T. & Colonna, M. Siglec-H is an IPC-specific receptor that modulates type I IFN secretion through DAP12. Blood 107, 2474–2476, https://doi.org/10.1182/blood-2005-09-3746 (2006). (PMID: 10.1182/blood-2005-09-3746162935951895736)
      Blasius, A. et al. A cell-surface molecule selectively expressed on murine natural interferon-producing cells that blocks secretion of interferon-alpha. Blood 103, 4201–4206, https://doi.org/10.1182/blood-2003-09-3108 (2004). (PMID: 10.1182/blood-2003-09-310814695235)
      Puttur, F. et al. Absence of Siglec-H in MCMV infection elevates interferon alpha production but does not enhance viral clearance. PLoS Pathog 9, e1003648, https://doi.org/10.1371/journal.ppat.1003648 (2013). (PMID: 10.1371/journal.ppat.1003648240861373784486)
      Schmitt, H. et al. Siglec-H protects from virus-triggered severe systemic autoimmunity. J Exp Med 213, 1627–1644, https://doi.org/10.1084/jem.20160189 (2016). (PMID: 10.1084/jem.20160189273775894986536)
      Chapman, A. J. et al. A murine cytomegalovirus-neutralizing monoclonal antibody exhibits autoreactivity and induces tissue damage in vivo. Immunology 81, 435–443 (1994). (PMID: 75158481422350)
      Chang, M., Pan, M. R., Chen, D. Y. & Lan, J. L. Human cytomegalovirus pp65 lower matrix protein: a humoral immunogen for systemic lupus erythematosus patients and autoantibody accelerator for NZB/W F1 mice. Clin Exp Immunol 143, 167–179, https://doi.org/10.1111/j.1365-2249.2005.02974.x (2006). (PMID: 10.1111/j.1365-2249.2005.02974.x163679481809570)
      Abate, D. A., Watanabe, S. & Mocarski, E. S. Major human cytomegalovirus structural protein pp65 (ppUL83) prevents interferon response factor 3 activation in the interferon response. J Virol 78, 10995–11006, https://doi.org/10.1128/JVI.78.20.10995-11006.2004 (2004). (PMID: 10.1128/JVI.78.20.10995-11006.200415452220521853)
      Li, T., Chen, J. & Cristea, I. M. Human cytomegalovirus tegument protein pUL83 inhibits IFI16-mediated DNA sensing for immune evasion. Cell host & microbe 14, 591–599, https://doi.org/10.1016/j.chom.2013.10.007 (2013). (PMID: 10.1016/j.chom.2013.10.007)
      Gallina, A. et al. Polo-like kinase 1 as a target for human cytomegalovirus pp65 lower matrix protein. J Virol 73, 1468–1478 (1999). (PMID: 10.1128/JVI.73.2.1468-1478.1999)
      McLaughlin-Taylor, E. et al. Identification of the major late human cytomegalovirus matrix protein pp65 as a target antigen for CD8+ virus-specific cytotoxic T lymphocytes. J Med Virol 43, 103–110 (1994). (PMID: 10.1002/jmv.1890430119)
      Hsieh, A. H., Jhou, Y. J., Liang, C. T., Chang, M. & Wang, S. L. Fragment of tegument protein pp65 of human cytomegalovirus induces autoantibodies in BALB/c mice. Arthritis Res Ther 13, R162, https://doi.org/10.1186/ar3481 (2011). (PMID: 10.1186/ar3481219890803308095)
      Hsieh, A. H. et al. B cell epitope of human cytomegalovirus phosphoprotein 65 (HCMV pp65) induced anti-dsDNA antibody in BALB/c mice. Arthritis Res Ther 19, 65, https://doi.org/10.1186/s13075-017-1268-2 (2017). (PMID: 10.1186/s13075-017-1268-2)
      Weening, J. J. et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited. Kidney Int 65, 521–530, https://doi.org/10.1111/j.1523-1755.2004.00443.x (2004). (PMID: 10.1111/j.1523-1755.2004.00443.x14717922)
      Shillitoe, E. J. et al. Antibody to cytomegalovirus in patients with Sjogren’s syndrome. As determined by an enzyme-linked immunosorbent assay. Arthritis Rheum 25, 260–265, https://doi.org/10.1002/art.1780250303 (1982). (PMID: 10.1002/art.17802503036279118)
      Baboonian, C. et al. Virus infection induces redistribution and membrane localization of the nuclear antigen La (SS-B): a possible mechanism for autoimmunity. Clin Exp Immunol 78, 454–459 (1989). (PMID: 25588241534804)
      Fairweather, D. et al. Wild isolates of murine cytomegalovirus induce myocarditis and antibodies that cross-react with virus and cardiac myosin. Immunology 94, 263–270, https://doi.org/10.1046/j.1365-2567.1998.00500.x (1998). (PMID: 10.1046/j.1365-2567.1998.00500.x97413511364215)
      Fleck, M., Kern, E. R., Zhou, T., Lang, B. & Mountz, J. D. Murine cytomegalovirus induces a Sjogren’s syndrome-like disease in C57Bl/6-lpr/lpr mice. Arthritis Rheum 41, 2175–2184, doi:10.1002/1529-0131(199812)41:12<2175::AID-ART12>3.0.CO;2-I (1998).
      Zhu, J. Cytomegalovirus infection induces expression of 60 KD/Ro antigen on human keratinocytes. Lupus 4, 396–406, https://doi.org/10.1177/096120339500400511 (1995). (PMID: 10.1177/0961203395004005118563735)
      Gharavi, A. E. et al. Antiphospholipid antibodies induced in mice by immunization with a cytomegalovirus-derived peptide cause thrombosis and activation of endothelial cells in vivo. Arthritis Rheum 46, 545–552, https://doi.org/10.1002/art.10130 (2002). (PMID: 10.1002/art.1013011840458)
      Abdel-Wahab, N., Lopez-Olivo, M. A., Pinto-Patarroyo, G. P. & Suarez-Almazor, M. E. Systematic review of case reports of antiphospholipid syndrome following infection. Lupus 25, 1520–1531, https://doi.org/10.1177/0961203316640912 (2016). (PMID: 10.1177/096120331664091227060064)
      Wang, D. & Shenk, T. Human cytomegalovirus UL131 open reading frame is required for epithelial cell tropism. J Virol 79, 10330–10338, https://doi.org/10.1128/JVI.79.16.10330-10338.2005 (2005). (PMID: 10.1128/JVI.79.16.10330-10338.2005160518251182637)
      Murray, S. E. et al. Fibroblast-adapted human CMV vaccines elicit predominantly conventional CD8 T cell responses in humans. J Exp Med 214, 1889–1899, https://doi.org/10.1084/jem.20161988 (2017). (PMID: 10.1084/jem.20161988285662755502433)
      Schmolke, S., Drescher, P., Jahn, G. & Plachter, B. Nuclear targeting of the tegument protein pp65 (UL83) of human cytomegalovirus: an unusual bipartite nuclear localization signal functions with other portions of the protein to mediate its efficient nuclear transport. J Virol 69, 1071–1078 (1995). (PMID: 10.1128/JVI.69.2.1071-1078.1995)
      Dal Monte, P., Bessia, C., Landini, M. P. & Michelson, S. Expression of human cytomegalovirus ppUL83 (pp65) in a stable cell line and its association with metaphase chromosomes. J Gen Virol 77(Pt 10), 2591–2596, https://doi.org/10.1099/0022-1317-77-10-2591 (1996). (PMID: 10.1099/0022-1317-77-10-25918887495)
      Andreassen, K. et al. T cell lines specific for polyomavirus T-antigen recognize T-antigen complexed with nucleosomes: a molecular basis for anti-DNA antibody production. Eur J Immunol 29, 2715–2728, doi:10.1002/(SICI)1521-4141(199909)29:09<2715::AID-IMMU2715>3.0.CO;2-# (1999).
      Chiu, Y. L. et al. Cytotoxic polyfunctionality maturation of cytomegalovirus-pp65-specific CD4+ and CD8+ T-cell responses in older adults positively correlates with response size. Sci Rep 6, 19227, https://doi.org/10.1038/srep19227 (2016). (PMID: 10.1038/srep19227267784094726016)
      del Guercio, M. F. et al. Potent immunogenic short linear peptide constructs composed of B cell epitopes and Pan DR T helper epitopes (PADRE) for antibody responses in vivo. Vaccine 15, 441–448 (1997). (PMID: 10.1016/S0264-410X(97)00186-2)
      Dempsey, P. W., Allison, M. E., Akkaraju, S., Goodnow, C. C. & Fearon, D. T. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271, 348–350 (1996). (PMID: 10.1126/science.271.5247.348)
      Haas, K. M. et al. Cutting edge: C3d functions as a molecular adjuvant in the absence of CD21/35 expression. J Immunol 172, 5833–5837 (2004). (PMID: 10.4049/jimmunol.172.10.5833)
      Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med 349, 1526–1533, https://doi.org/10.1056/NEJMoa021933 (2003). (PMID: 10.1056/NEJMoa02193314561795)
      Radic, M. Z. & Weigert, M. Genetic and structural evidence for antigen selection of anti-DNA antibodies. Annu Rev Immunol 12, 487–520, https://doi.org/10.1146/annurev.iy.12.040194.002415 (1994). (PMID: 10.1146/annurev.iy.12.040194.0024158011289)
      Yabuuchi, J. et al. Immunoglobulin G subclass 3 in ISN/RPL lupus nephritis classification. Clin Nephrol 91, 32–39, https://doi.org/10.5414/CN109459 (2019). (PMID: 10.5414/CN10945930431429)
      Bruschi, M. et al. Glomerular Autoimmune Multicomponents of Human Lupus Nephritis In Vivo (2): Planted Antigens. J Am Soc Nephrol 26, 1905–1924, https://doi.org/10.1681/ASN.2014050493 (2015). (PMID: 10.1681/ASN.201405049325398787)
      Qu, Z., Cui, Z., Liu, G. & Zhao, M. H. The distribution of IgG subclass deposition on renal tissues from patients with anti-glomerular basement membrane disease. BMC Immunol 14, 19, https://doi.org/10.1186/1471-2172-14-19 (2013). (PMID: 10.1186/1471-2172-14-19235869763648436)
      Revert, F. et al. Increased Goodpasture antigen-binding protein expression induces type IV collagen disorganization and deposit of immunoglobulin A in glomerular basement membrane. Am J Pathol 171, 1419–1430, https://doi.org/10.2353/ajpath.2007.070205 (2007). (PMID: 10.2353/ajpath.2007.070205179165992043504)
      Olin, A. I., Morgelin, M., Truedsson, L., Sturfelt, G. & Bengtsson, A. A. Pathogenic mechanisms in lupus nephritis: Nucleosomes bind aberrant laminin beta1 with high affinity and colocalize in the electron-dense deposits. Arthritis Rheumatol 66, 397–406, https://doi.org/10.1002/art.38250 (2014). (PMID: 10.1002/art.3825024504812)
      Yung, S., Cheung, K. F., Zhang, Q. & Chan, T. M. Anti-dsDNA antibodies bind to mesangial annexin II in lupus nephritis. J Am Soc Nephrol 21, 1912–1927, https://doi.org/10.1681/ASN.2009080805 (2010). (PMID: 10.1681/ASN.2009080805208471463014006)
      Yung, S., Tsang, R. C., Leung, J. K. & Chan, T. M. Increased mesangial cell hyaluronan expression in lupus nephritis is mediated by anti-DNA antibody-induced IL-1beta. Kidney Int 69, 272–280, https://doi.org/10.1038/sj.ki.5000042 (2006). (PMID: 10.1038/sj.ki.500004216408116)
      Zhao, Z. et al. Cross-reactivity of human lupus anti-DNA antibodies with alpha-actinin and nephritogenic potential. Arthritis Rheum 52, 522–530, https://doi.org/10.1002/art.20862 (2005). (PMID: 10.1002/art.2086215693007)
      D’Andrea, D. M., Coupaye-Gerard, B., Kleyman, T. R., Foster, M. H. & Madaio, M. P. Lupus autoantibodies interact directly with distinct glomerular and vascular cell surface antigens. Kidney Int 49, 1214–1221 (1996). (PMID: 10.1038/ki.1996.175)
      Krishnan, M. R., Wang, C. & Marion, T. N. Anti-DNA autoantibodies initiate experimental lupus nephritis by binding directly to the glomerular basement membrane in mice. Kidney Int 82, 184–192, https://doi.org/10.1038/ki.2011.484 (2012). (PMID: 10.1038/ki.2011.484222976763343188)
      Tan, E. M. et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 25, 1271–1277 (1982). (PMID: 10.1002/art.1780251101)
      Hochberg, M. C. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40, 1725, https://doi.org/10.1002/1529-0131(199709)40:9<1725::AID-ART29>3.0.CO;2-Y (1997). (PMID: 10.1002/1529-0131(199709)40:9<1725::AID-ART29>3.0.CO;2-Y9324032)
      Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402 (1997). (PMID: 10.1093/nar/25.17.3389)
      Altschul, S. F. et al. Protein database searches using compositionally adjusted substitution matrices. FEBS J 272, 5101–5109, https://doi.org/10.1111/j.1742-4658.2005.04945.x (2005). (PMID: 10.1111/j.1742-4658.2005.04945.x162189441343503)
      Takemoto, M. et al. A new method for large scale isolation of kidney glomeruli from mice. Am J Pathol 161, 799–805, https://doi.org/10.1016/S0002-9440(10)64239-3 (2002). (PMID: 10.1016/S0002-9440(10)64239-3122137071867262)
      Fischer, A. H., Jacobson, K. A., Rose, J. & Zeller, R. Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc 2008, pdb prot4986, https://doi.org/10.1101/pdb.prot4986 (2008).
    • Accession Number:
      0 (Autoantibodies)
      0 (TAF9 protein, human)
      0 (TATA-Binding Protein Associated Factors)
      0 (Transcription Factor TFIID)
      0 (Viral Matrix Proteins)
      0 (cytomegalovirus matrix protein 65kDa)
      9007-49-2 (DNA)
    • Publication Date:
      Date Created: 20200617 Date Completed: 20201209 Latest Revision: 20210615
    • Publication Date:
      20240829
    • Accession Number:
      PMC7295797
    • Accession Number:
      10.1038/s41598-020-66804-1
    • Accession Number:
      32541894