Acquired contractile ability in human endometrial stromal cells by passive loading of cyclic tensile stretch.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • Subject Terms:
    • Abstract:
      The uterus plays an important and unique role during pregnancy and is a dynamic organ subjected to mechanical stimuli. It has been reported that infertility occurs when the peristalsis is prevented, although its mechanisms remain unknown. In this study, we found that mechanical strain mimicking the peristaltic motion of the uterine smooth muscle layer enabled the endometrial stromal cells to acquire contractility. In order to mimic the peristalsis induced by uterine smooth muscle cells, cyclic tensile stretch was applied to human endometrial stromal cells. The results showed that the strained cells exerted greater contractility in three-dimensional collagen gels in the presence of oxytocin, due to up-regulated alpha-smooth muscle actin expression via the cAMP signaling pathway. These in vitro findings underscore the plasticity of the endometrial stromal cell phenotype and suggest the possibility of acquired contractility by these cells in vivo and its potential contribution to uterine contractile activity. This phenomenon may be a typical example of how a tissue passively acquires new contractile functions under mechanical stimulation from a neighboring tissue, enabling it to support the adjacent tissue's functions.
    • References:
      Kim, J., Montagne, K., Ushida, T. & Furukawa, K. Enhanced chondrogenesis with upregulation of PKR using a novel hydrostatic pressure bioreactor. Bioscience, Biotechnology, and Biochemistry 79, 239–241 (2014). (PMID: 2534867810.1080/09168451.2014.975184)
      Kim, J., Montagne, K., Nemoto, H., Ushida, T. & Furukawa, K. S. Hypergravity down-regulates c-fos gene expression via ROCK/Rho-GTP and the PI3K signaling pathway in murine ATDC5 chondroprogenitor cells. PLoS ONE 12, e0185394 (2017). (PMID: 28953959561720610.1371/journal.pone.0185394)
      Ting, S. Y. W., Montagne, K., Nishimura, Y., Ushida, T. & Furukawa, K. S. Modulation of the Effect of Transforming Growth Factor-β3 by Low-Intensity Pulsed Ultrasound on Scaffold-Free Dedifferentiated Articular Bovine Chondrocyte Tissues. Tissue Eng Part C Methods 21, 1005–1014 (2015). (PMID: 2591518510.1089/ten.tec.2014.0428)
      Furukawa, K. S., Imura, K., Tateishi, T. & Ushida, T. Scaffold-free cartilage by rotational culture for tissue engineering. J. Biotechnol. 133, 134–145 (2008). (PMID: 1791327410.1016/j.jbiotec.2007.07.957)
      Kim, J. & Adachi, T. Cell Condensation Triggers the Differentiation of Osteoblast Precursor Cells to Osteocyte-Like Cells. Front. Bioeng. Biotechnol. 7, (2019).
      Levasseur, M. C. Utero-ovarian relationships in placental mammals: role of uterus and embryo in the regulation of progesterone secretion by the corpus luteum. A review. Reprod Nutr Dev 23, 793–816 (1983). (PMID: 635930510.1051/rnd:19830601)
      Padykula, H. A. Regeneration in the primate uterus: the role of stem cells. Ann. N. Y. Acad. Sci. 622, 47–56 (1991). (PMID: 206420410.1111/j.1749-6632.1991.tb37849.x)
      Chan, R. W. S., Schwab, K. E. & Gargett, C. E. Clonogenicity of human endometrial epithelial and stromal cells. Biol. Reprod. 70, 1738–1750 (2004). (PMID: 1476673210.1095/biolreprod.103.024109)
      Bulletti, C. et al. Abnormal uterine contractility in nonpregnant women. Ann. N. Y. Acad. Sci. 828, 223–229 (1997). (PMID: 932984310.1111/j.1749-6632.1997.tb48543.x)
      Shynlova, O., Mitchell, J. A., Tsampalieros, A., Langille, B. L. & Lye, S. J. Progesterone and gravidity differentially regulate expression of extracellular matrix components in the pregnant rat myometrium. Biol. Reprod. 70, 986–992 (2004). (PMID: 1464510910.1095/biolreprod.103.023648)
      van Gestel, I., IJland, M. M., Hoogland, H. J. & Evers, J. L. H. Endometrial wave-like activity in the non-pregnant uterus. Hum. Reprod. Update 9, 131–138 (2003). (PMID: 1275177510.1093/humupd/dmg011)
      Bulletti, C. & de Ziegler, D. Uterine contractility and embryo implantation. Curr. Opin. Obstet. Gynecol. 18, 473–484 (2006). (PMID: 1679443110.1097/01.gco.0000233947.97543.c4)
      IJland, M. M., Evers, J. L., Dunselman, G. A., Volovics, L. & Hoogland, H. J. Relation between endometrial wavelike activity and fecundability in spontaneous cycles. Fertil. Steril. 67, 492–496 (1997). (PMID: 909133610.1016/S0015-0282(97)80075-1)
      Montagne, K. et al. High hydrostatic pressure induces pro-osteoarthritic changes in cartilage precursor cells: A transcriptome analysis. PLoS ONE 12, e0183226 (2017). (PMID: 28813497555898210.1371/journal.pone.0183226)
      Slager, C. J. et al. The role of shear stress in the generation of rupture-prone vulnerable plaques. Nat Rev Cardiol 2, 401–407 (2005). (PMID: 10.1038/ncpcardio0274)
      Matsuura, K. et al. Improved development of mouse and human embryos using a tilting embryo culture system. Reproductive BioMedicine Online 20, 358–364 (2010). (PMID: 2009309110.1016/j.rbmo.2009.12.002)
      Yoshino, O. et al. Decreased pregnancy rate is linked to abnormal uterine peristalsis caused by intramural fibroids. Hum Reprod 10, 2475–2479 (2010). (PMID: 10.1093/humrep/deq222)
      Harada, M. et al. Mechanical stretch upregulates IGFBP-1 secretion from decidualized endometrial stromal cells. American Journal of Physiology - Endocrinology and Metabolism 290, E268–E272 (2006). (PMID: 1611824810.1152/ajpendo.00334.2005)
      Ishisaki, A., Hayashi, H., Li, A.-J. & Imamura, T. Human Umbilical Vein Endothelium-derived Cells Retain Potential to Differentiate into Smooth Muscle-like Cells. J. Biol. Chem. 278, 1303–1309 (2003). (PMID: 1241759110.1074/jbc.M207329200)
      Cevallos, M. et al. Cyclic strain induces expression of specific smooth muscle cell markers in human endothelial cells. Differentiation 74, 552–561 (2006). (PMID: 1717785210.1111/j.1432-0436.2006.00089.x)
      Shoajei, S., Shahdpour, M. T., Shokrgozar, M. A. & Haghighipour, N. Alteration of human umbilical vein endothelial cell gene expression in different biomechanical environments. Cell Biology International 38, 577–581 (2014). (PMID: 2437563310.1002/cbin.10237)
      Konrad, L. et al. Composition of the stroma in the human endometrium and endometriosis. Reproductive Science 25(7), 1106–1115 (2018). (PMID: 10.1177/1933719117734319)
      Tawfik, O. et al. Transgelin, a novel marker of smooth muscle cell differentiation, effectively distinguishes endometrial stromal tumors from uterine smooth muscle tumors. Int. J. Gynecol. Obstet. Reprod. Med. Res. 1(1), 26–31 (2014). (PMID: 260236844443873)
      Santoso, E. G. et al. Application of detergents or high hydrostatic pressure as decellularization processes in uterine tissues and their subsequent effects on in vivo uterine regeneration in murine models. PLoS One 24;9(7), e103201 (2014). (PMID: 10.1371/journal.pone.0103201)
      Harada, M. et al. Mechanical Stretch Stimulates Interleukin-8 Production in Endometrial Stromal Cells: Possible Implications in Endometrium-Related Events. The Journal of Clinical Endocrinology & Metabolism 90, 1144–1148 (2005). (PMID: 10.1210/jc.2004-1089)
      Havelock, J. C. et al. Human myometrial gene expression before and during parturition. Biol. Reprod. 72, 707–719 (2005). (PMID: 1550973110.1095/biolreprod.104.032979)
      Loddenkemper, C. et al. Use of oxytocin receptor expression in distinguishing between uterine smooth muscle tumors and endometrial stromal sarcoma. Am. J. Surg. Pathol. 27, 1458–1462 (2003). (PMID: 1457648010.1097/00000478-200311000-00009)
      Blanks, A. M., Shmygol, A. & Thornton, S. Preterm labour. Myometrial function in prematurity. Best Pract Res Clin Obstet Gynaecol 21, 807–819 (2007). (PMID: 1744613810.1016/j.bpobgyn.2007.03.003)
      Kimura, T., Tanizawa, O., Mori, K., Brownstein, M. J. & Okayama, H. Structure and expression of a human oxytocin receptor. Nature 1992 356:6369 356, 526–529 (1992).
      Robinson, R. S., Mann, G. E., Lamming, G. E. & Wathes, D. C. The effect of pregnancy on the expression of uterine oxytocin, oestrogen and progesterone receptors during early pregnancy in the cow. J Endocrinol 160, 21–33 (1999). (PMID: 985417310.1677/joe.0.1600021)
      Kunz, G., Noe, M., Herbertz, M. & Leyendecker, G. Uterine peristalsis during the follicular phase of the menstrual cycle: effects of oestrogen, antioestrogen and oxytocin. Hum. Reprod. Update 4, 647–654 (1998). (PMID: 1002761810.1093/humupd/4.5.647)
      Schürch, W., Seemayer, T. A., Lagacé, R. & Gabbiani, G. The intermediate filament cytoskeleton of myofibroblasts: an immunofluorescence and ultrastructural study. Virchows Arch A Pathol Anat Histopathol 403, 323–336 (1984). (PMID: 642993710.1007/BF00737283)
      Eyden, B. P., Hale, R. J., Richmond, I. & Buckley, C. H. Cytoskeletal filaments in the smooth muscle cells of uterine leiomyomata and myometrium: an ultrastructural and immunohistochemical analysis. Virchows Arch A Pathol Anat Histopathol 420, 51–58 (1992). (PMID: 153945110.1007/BF01605984)
      Yu, J. et al. IL-6 downregulates transcription of NTPDase2 via specific promoter elements. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G748–56 (2008). (PMID: 18202114523966310.1152/ajpgi.00208.2007)
      Shimada, M. et al. IL-6 secretion by human pancreatic periacinar myofibroblasts in response to inflammatory mediators. J. Immunol. 168, 861–868 (2002). (PMID: 1177798310.4049/jimmunol.168.2.861)
      Catarzi, S. et al. Oxidative state and IL-6 production in intestinal myofibroblasts of Crohn’s disease patients. Inflamm. Bowel Dis. 17, 1674–1684 (2011). (PMID: 2174442210.1002/ibd.21552)
      Iivanainen, E. et al. Angiopoietin-regulated recruitment of vascular smooth muscle cells by endothelial-derived heparin binding EGF-like growth factor. FASEB J 17, 1609–1621 (2003). (PMID: 1295816710.1096/fj.02-0939com)
      Jeansson, M. et al. Angiopoietin-1 is essential in mouse vasculature during development and in response to injury. The Journal of Clinical Investigation 121, 2278–2289 (2011). (PMID: 21606590310477310.1172/JCI46322)
      Hellström, M., Kalén, M., Lindahl, P., Abramsson, A. & Betsholtz, C. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126, 3047–3055 (1999). (PMID: 10375497)
      Rensen, S. S. M., Doevendans, P. A. F. M. & van Eys, G. J. J. M. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J 15, 100–108 (2007). (PMID: 17612668184775710.1007/BF03085963)
      Frayon, S., Cueille, C., Gnidéhou, S., de Vernejoul, M. C. & Garel, J. M. Dexamethasone increases RAMP1 and CRLR mRNA expressions in human vascular smooth muscle cells. Biochemical and Biophysical Research Communications 270, 1063–1067 (2000). (PMID: 1077295010.1006/bbrc.2000.2552)
      Zhang, Z., Dickerson, I. M. & Russo, A. F. Calcitonin gene-related peptide receptor activation by receptor activity-modifying protein-1 gene transfer to vascular smooth muscle cells. Endocrinology 147, 1932–1940 (2006). (PMID: 1637342110.1210/en.2005-0918)
      Nikitenko, L. L. et al. Differential and cell-specific expression of calcitonin receptor-like receptor and receptor activity modifying proteins in the human uterus. Mol. Hum. Reprod. 7, 655–664 (2001). (PMID: 1142038910.1093/molehr/7.7.655)
      Logan, P. C., Ponnampalam, A. P., Steiner, M. & Mitchell, M. D. Effect of cyclic AMP and estrogen/progesterone on the transcription of DNA methyltransferases during the decidualization of human endometrial stromal cells. Mol. Hum. Reprod. 19, 302–312 (2013). (PMID: 2323348710.1093/molehr/gas062)
      Aronica, S. M., Kraus, W. L. & Katzenellenbogen, B. S. Estrogen action via the cAMP signaling pathway: stimulation of adenylate cyclase and cAMP-regulated gene transcription. Proc. Natl. Acad. Sci. USA 91, 8517–8521 (1994). (PMID: 807891410.1073/pnas.91.18.8517)
      Aghajanova, L., Horcajadas, J. A., Esteban, F. J. & Giudice, L. C. The bone marrow-derived human mesenchymal stem cell: potential progenitor of the endometrial stromal fibroblast. Biol. Reprod. 82, 1076–1087 (2010). (PMID: 20147733287449510.1095/biolreprod.109.082867)
      Walsh, D. A. & Van Patten, S. M. Multiple pathway signal transduction by the cAMP-dependent protein kinase. FASEB J 8, 1227–1236 (1994). (PMID: 800173410.1096/fasebj.8.15.8001734)
      Goel, M., Zuo, C.-D. & Schilling, W. P. Role of cAMP/PKA signaling cascade in vasopressin-induced trafficking of TRPC3 channels in principal cells of the collecting duct. Am. J. Physiol. Renal Physiol. 298, F988–96 (2010). (PMID: 20107112285330610.1152/ajprenal.00586.2009)
      Ngan, P. et al. The interactive effects of mechanical stress and interleukin-1 beta on prostaglandin E and cyclic AMP production in human periodontal ligament fibroblasts in vitro: comparison with cloned osteoblastic cells of mouse (MC3T3-E1). Arch. Oral Biol. 35, 717–725 (1990). (PMID: 196539310.1016/0003-9969(90)90094-Q)
      Fitzgerald, J. B. et al. Mechanical compression of cartilage explants induces multiple time-dependent gene expression patterns and involves intracellular calcium and cyclic AMP. J. Biol. Chem. 279, 19502–19511 (2004). (PMID: 1496057110.1074/jbc.M400437200)
      Matsumoto, H. et al. Regulation of proliferation, motility, and contractility of human endometrial stromal cells by platelet-derived growth factor. The Journal of Clinical Endocrinology & Metabolism 90, 3560–3567 (2005). (PMID: 10.1210/jc.2004-1918)
      Murata, T., Narita, K., Honda, K. & Higuchi, T. Changes of receptor mRNAs for oxytocin and estrogen during the estrous cycle in rat uterus. J. Vet. Med. Sci. 65, 707–712 (2003). (PMID: 1286773110.1292/jvms.65.707)
      Fuchs, A. R. et al. Oxytocin and vasopressin receptors in bovine endometrium and myometrium during the estrous cycle and early pregnancy. Endocrinology 127, 629–636 (1990). (PMID: 216491510.1210/endo-127-2-629)
      Bulletti, C. et al. Uterine contractility during the menstrual cycle. Human Reproduction 15, 81–89 (2000). (PMID: 1092842110.1093/humrep/15.suppl_1.81)
      Kimatrai, M., Oliver, C., Abadía-Molina, A. C., García-Pacheco, J. M. & Olivares, E. G. Contractile activity of human decidual stromal cells. The Journal of Clinical Endocrinology & Metabolism 88, 844–849 (2003). (PMID: 10.1210/jc.2002-021224)
      Takemura, M. et al. Expression and localization of oxytocin receptor gene in human uterine endometrium in relation to the menstrual cycle. Endocrinology 132, 1830–1835 (1993). (PMID: 838499910.1210/endo.132.4.8384999)
      Koga, K. et al. Demonstration of angiogenin in human endometrium and its enhanced expression in endometrial tissues in the secretory phase and the decidua. The Journal of Clinical Endocrinology & Metabolism 86, 5609–5614 (2001). (PMID: 10.1210/jcem.86.11.8038)
      Taguchi, A. et al. Resveratrol Enhances Apoptosis in Endometriotic Stromal Cells. Am. J. Reprod. Immunol. 75, 486–492 (2016). (PMID: 2678278110.1111/aji.12489)
      Hirota, Y. et al. Possible implication of midkine in the development of endometriosis. Hum. Reprod. 20, 1084–1089 (2005). (PMID: 1573476410.1093/humrep/deh720)
    • Accession Number:
      0 (ACTA2 protein, human)
      0 (Actins)
      0 (Collagen Type I)
      0 (Isoquinolines)
      0 (Sulfonamides)
      50-56-6 (Oxytocin)
      56092-81-0 (Ionomycin)
      E0399OZS9N (Cyclic AMP)
      M876330O56 (N-(2-(4-bromocinnamylamino)ethyl)-5-isoquinolinesulfonamide)
    • Publication Date:
      Date Created: 20200604 Date Completed: 20201217 Latest Revision: 20210602
    • Publication Date:
      20221213
    • Accession Number:
      PMC7265371
    • Accession Number:
      10.1038/s41598-020-65884-3
    • Accession Number:
      32488068