The Adenovirus Death Protein - a small membrane protein controls cell lysis and disease.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Georgi F;Georgi F; Greber UF; Greber UF
  • Source:
    FEBS letters [FEBS Lett] 2020 Jun; Vol. 594 (12), pp. 1861-1878. Date of Electronic Publication: 2020 Jun 19.
  • Publication Type:
    Journal Article; Research Support, Non-U.S. Gov't; Review
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: John Wiley & Sons Ltd Country of Publication: England NLM ID: 0155157 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1873-3468 (Electronic) Linking ISSN: 00145793 NLM ISO Abbreviation: FEBS Lett Subsets: MEDLINE
    • Publication Information:
      Publication: Jan. 2016- : West Sussex : John Wiley & Sons Ltd.
      Original Publication: Amsterdam, North-Holland on behalf of the Federation of European Biochemical Societies.
    • Subject Terms:
    • Abstract:
      Human adenoviruses (HAdVs) cause widespread acute and persistent infections. Infections are usually mild and controlled by humoral and cell-based immunity. Reactivation of persistently infected immune cells can lead to a life-threatening disease in immunocompromised individuals, especially children and transplant recipients. To date, no effective therapy or vaccine against HAdV disease is available to the public. HAdV-C2 and C5 are the best-studied of more than 100 HAdV types. They persist in infected cells and release their progeny by host cell lysis to neighbouring cells and fluids, a process facilitated by the adenovirus death protein (ADP). ADP consists of about 100 amino acids and harbours a single membrane-spanning domain. It undergoes post-translational processing in endoplasmic reticulum and Golgi compartments, before localizing to the inner nuclear membrane. Here, we discuss the current knowledge on how ADP induces membrane rupture. Membrane rupture is essential for both progression of disease and efficacy of therapeutic viruses in clinical applications, in particular oncolytic therapy.
      (© 2020 Federation of European Biochemical Societies.)
    • References:
      Lion T (2019) Adenovirus persistence, reactivation, and clinical management. FEBS Lett 593, 3571-3582.
      Lynch JP and Kajon AE (2016) Adenovirus: epidemiology, global spread of novel serotypes, and advances in treatment and prevention. Semin Respir Crit Care Med 37, 586-602.
      Harrach B (2020) Available adenovirus sequences. https://sites.google.com/site/adenoseq/.
      Harrach B, Tarján ZL and Benkő M (2019) Adenoviruses across the animal kingdom: a walk in the zoo. FEBS Lett 593, 3660-3673.
      Ismail AM, Cui T, Dommaraju K, Singh G, Dehghan S, Seto J, Shrivastava S, Fedorova NB, Gupta N, Stockwell TB et al. (2018) Genomic analysis of a large set of currently-and historically-important human adenovirus pathogens. Emerg Microbes Infect 7, 10.
      Greber UF and Flatt JW (2019) Adenovirus entry: from infection to immunity. Annu Rev Virol 6, 177-197.
      Nemerow GR, Pache L, Reddy V and Stewart PL (2009) Insights into adenovirus host cell interactions from structural studies. Virology 384, 380-388.
      Benevento M, Di Palma S, Snijder J, Moyer CL, Reddy VS, Nemerow GR and Heck AJR (2014) Adenovirus composition, proteolysis, and disassembly studied by in-depth qualitative and quantitative proteomics. J Biol Chem 289, 11421-11430.
      Reddy VS, Natchiar SK, Stewart PL and Nemerow GR (2010) Crystal structure of human adenovirus at 3.5 A resolution. Science 329, 1071-1075.
      Arnberg N (2012) Adenovirus receptors: implications for targeting of viral vectors. Trends Pharmacol Sci 33, 442-448.
      Khanal S, Ghimire P and Dhamoon AS (2018) The repertoire of adenovirus in human disease: the innocuous to the deadly. Biomedicines 6, 30.
      Nemerow G and Flint J (2019) Lessons learned from adenovirus (1970-2019). FEBS Lett 593, 3395-3418.
      Wolfrum N and Greber UF (2013) Adenovirus signalling in entry. Cell Microbiol 15, 53-62.
      Ismail AM, Zhou X, Dyer DW, Seto D, Rajaiya J and Chodosh J (2019) Genomic foundations of evolution and ocular pathogenesis in human adenovirus species D. FEBS Lett 593, 3583-3608.
      Lion T (2014) Adenovirus infections in immunocompetent and immunocompromised patients. Clin Microbiol Rev 27, 441-462.
      Mennechet FJD, Paris O, Ouoba AR, Salazar Arenas S, Sirima SB, Takoudjou Dzomo GR, Diarra A, Traore IT, Kania D, Eichholz K et al. (2019) A review of 65 years of human adenovirus seroprevalence. Expert Rev Vaccines 18, 597-613.
      Sumida SM, Truitt DM, Lemckert AAC, Vogels R, Custers JHHV, Addo MM, Lockman S, Peter T, Peyerl FW, Kishko MG et al. (2005) Neutralizing antibodies to adenovirus serotype 5 vaccine vectors are directed primarily against the adenovirus hexon protein. J Immunol 174, 7179-7185.
      Uusi-Kerttula H, Hulin-Curtis S, Davies J and Parker AL (2015) Oncolytic adenovirus: strategies and insights for vector design and immuno-oncolytic applications. Viruses 7, 6009-6042.
      Vogels R, Zuijdgeest D, van Rijnsoever R, Hartkoorn E, Damen I, de Béthune M-P, Kostense S, Penders G, Helmus N, Koudstaal W et al. (2003) Replication-deficient human adenovirus type 35 vectors for gene transfer and vaccination: efficient human cell infection and bypass of preexisting adenovirus immunity. J Virol 77, 8263-8271.
      Krilov LR (2005) Adenovirus infections in the immunocompromised host. Pediatr Infect Dis J 24, 555-556.
      Kosulin K, Geiger E, Vécsei A, Huber WD, Rauch M, Brenner E, Wrba F, Hammer K, Innerhofer A, Pötschger U et al. (2016) Persistence and reactivation of human adenoviruses in the gastrointestinal tract. Clin Microbiol Infect 22, 381.e1-381.e8.
      Brown MT and Mangel WF (2004) Interaction of actin and its 11-amino acid C-terminal peptide as cofactors with the adenovirus proteinase. FEBS Lett 563, 213-218.
      Chen PH, Ornelles DA and Shenk T (1993) The adenovirus L3 23-kilodalton proteinase cleaves the amino-terminal head domain from cytokeratin 18 and disrupts the cytokeratin network of HeLa cells. J Virol 67, 3507-3514.
      Glaunsinger BA, Weiss RS, Lee SS and Javier R (2001) Link of the unique oncogenic properties of adenovirus type 9 E4-ORF1 to a select interaction with the candidate tumor suppressor protein ZO-2. EMBO J 20, 5578-5586.
      Greber UF (1998) Virus assembly and disassembly: the adenovirus cysteine protease as a trigger factor. Rev Med Virol 8, 213-222.
      Staufenbiel M, Epple P and Deppert W (1986) Progressive reorganization of the host cell cytoskeleton during adenovirus infection. J Virol 60, 1186-1191.
      Mangel WF and San Martín C (2014) Structure, function and dynamics in adenovirus maturation. Viruses 6, 4536-4570.
      Doronin K, Toth K, Kuppuswamy M, Krajcsi P, Tollefson AE and Wold WSM (2003) Overexpression of the ADP (E3-11.6K) protein increases cell lysis and spread of adenovirus. Virology 305, 378-387.
      Tollefson AE, Scaria A, Hermiston TW, Ryerse JS, Wold LJ and Wold WS (1996) The adenovirus death protein (E3-11.6K) is required at very late stages of infection for efficient cell lysis and release of adenovirus from infected cells. J Virol 70, 2296-2306.
      Yakimovich A, Gumpert H, Burckhardt CJ, Lütschg VA, Jurgeit A, Sbalzarini IF and Greber UF (2012) Cell-free transmission of human adenovirus by passive mass transfer in cell culture simulated in a computer model. J Virol 86, 10123-10137.
      Kaufman SS, Magid MS, Tschernia A, LeLeiko NS and Fishbein TM (2002) Discrimination between acute rejection and adenoviral enteritis in intestinal transplant recipients. Transplant Proc 34, 943-945.
      Wong NACS (2015) Gastrointestinal pathology in transplant patients. Histopathology 66, 467-479.
      Yakimovich A, Yakimovich Y, Schmid M, Mercer J, Sbalzarini IF and Greber UF (2016) Infectio: a generic framework for computational simulation of virus transmission between cells. mSphere 1. https://doi.org/10.1128/mSphere.00078-15.
      Schaberg KB, Kambham N, Sibley RK and Higgins JPT (2017) Adenovirus hepatitis: clinicopathologic analysis of 12 consecutive cases from a single institution. Am J Surg Pathol 41, 810-819.
      Radke JR, Yong SL and Cook JL (2016) Low-level expression of the E1B 20-kilodalton protein by adenovirus 14p1 enhances viral immunopathogenesis. J Virol 90, 497-505.
      Toth K, Spencer JF, Ying B, Tollefson AE and Wold WSM (2017) HAdV-C6 is a more relevant challenge virus than HAdV-C5 for testing antiviral drugs with the immunosuppressed Syrian Hamster Model. Viruses 9, 147.
      Wold WSM, Tollefson AE, Ying B, Spencer JF and Toth K (2019) Drug development against human adenoviruses and its advancement by Syrian hamster models. FEMS Microbiol Rev 43, 380-388.
      Tollefson AE, Ying B, Spencer JF, Sagartz JE, Wold WSM and Toth K (2017) Pathology in permissive Syrian hamsters after infection with species C Human Adenovirus (HAdV-C) is the result of virus replication: HAdV-C6 replicates more and causes more pathology than HAdV-C5. J Virol 91. https://doi.org/10.1128/JVI.00284-17.
      Toth K, Spencer JF, Dhar D, Sagartz JE, Buller RML, Painter GR and Wold WSM (2008) Hexadecyloxypropyl-cidofovir, CMX001, prevents adenovirus-induced mortality in a permissive, immunosuppressed animal model. Proc Natl Acad Sci USA 105, 7293-7297.
      Ying B, Toth K, Spencer JF, Meyer J, Tollefson AE, Patra D, Dhar D, Shashkova EV, Kuppuswamy M, Doronin K et al. (2009) INGN 007, an oncolytic adenovirus vector, replicates in Syrian hamsters but not mice: comparison of biodistribution studies. Cancer Gene Ther 16, 625-637.
      Haisma HJ, Kamps JAAM, Kamps GK, Plantinga JA, Rots MG and Bellu AR (2008) Polyinosinic acid enhances delivery of adenovirus vectors in vivo by preventing sequestration in liver macrophages. J Gen Virol 89, 1097-1105.
      Jogler C, Hoffmann D, Theegarten D, Grunwald T, Uberla K and Wildner O (2006) Replication properties of human adenovirus in vivo and in cultures of primary cells from different animal species. J Virol 80, 3549-3558.
      Chintakuntlawar AV, Astley R and Chodosh J (2007) Adenovirus type 37 keratitis in the C57BL/6J mouse. Invest Ophthalmol Vis Sci 48, 781-788.
      Chodosh J (2006) Human adenovirus type 37 and the BALB/c mouse: progress toward a restricted adenovirus keratitis model (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc 104, 346-365.
      Ginsberg HS, Moldawer LL, Sehgal PB, Redington M, Kilian PL, Chanock RM and Prince GA (1991) A mouse model for investigating the molecular pathogenesis of adenovirus pneumonia. Proc Natl Acad Sci USA 88, 1651-1655.
      Kajon AE, Gigliotti AP and Harrod KS (2003) Acute inflammatory response and remodeling of airway epithelium after subspecies B1 human adenovirus infection of the mouse lower respiratory tract. J Med Virol 71, 233-244.
      Orenstein JM and Dieterich DT (2001) The histopathology of 103 consecutive colonoscopy biopsies from 82 symptomatic patients with acquired immunodeficiency syndrome: original and look-back diagnoses. Arch Pathol Lab Med 125, 1042-1046.
      Ginsberg HS, Lundholm-Beauchamp U, Horswood RL, Pernis B, Wold WS, Chanock RM and Prince GA (1989) Role of early region 3 (E3) in pathogenesis of adenovirus disease. Proc Natl Acad Sci USA 86, 3823-3827.
      Kelly TJ and Lewis AM (1973) Use of nondefective adenovirus-simian virus 40 hybrids for mapping the simian virus 40 genome. J Virol 12, 643-652.
      Lichtenstein DL, Toth K, Doronin K, Tollefson AE and Wold WSM (2004) Functions and mechanisms of action of the adenovirus E3 proteins. Int Rev Immunol 23, 75-111.
      Donovan-Banfield I, Turnell AS, Hiscox JA, Leppard KN and Matthews DA (2020) Deep splicing plasticity of the human adenovirus type 5 transcriptome drives virus evolution. Commun Biol 3, 124.
      Scaria A and Wold WS (1994) Fine-mapping of sequences that suppress splicing in the E3 complex transcription unit of adenovirus. Virology 205, 406-416.
      Zhao H, Chen M and Pettersson U (2014) A new look at adenovirus splicing. Virology 456-457, 329-341.
      Bair CR, Kotha Lakshmi Narayan P and Kajon AE (2017) The tripartite leader sequence is required for ectopic expression of HAdV-B and HAdV-E E3 CR1 genes. Virology 505, 139-147.
      Burgert HG and Blusch JH (2000) Immunomodulatory functions encoded by the E3 transcription unit of adenoviruses. Virus Genes 21, 13-25.
      Davison AJ, Akter P, Cunningham C, Dolan A, Addison C, Dargan DJ, Hassan-Walker AF, Emery VC, Griffiths PD and Wilkinson GWG (2003) Homology between the human cytomegalovirus RL11 gene family and human adenovirus E3 genes. J Gen Virol 84, 657-663.
      Davison AJ, Benkő M and Harrach B (2003) Genetic content and evolution of adenoviruses. J Gen Virol 84, 2895-2908.
      Robinson CM, Seto D, Jones MS, Dyer DW and Chodosh J (2011) Molecular evolution of human species D adenoviruses. Infect Genet Evol 11, 1208-1217.
      Robinson CM, Singh G, Lee JY, Dehghan S, Rajaiya J, Liu EB, Yousuf MA, Betensky RA, Jones MS, Dyer DW et al. (2013) Molecular evolution of human adenoviruses. Sci Rep 3, 1812.
      Russell WC (2009) Adenoviruses: update on structure and function. J Gen Virol 90, 1-20.
      Zeng X and Carlin CR (2019) Adenovirus early region 3 RIDα protein limits NFκB signaling through stress-activated EGF receptors. PLoS Pathog 15, e1008017.
      Deryckere F and Burgert HG (1996) Early region 3 of adenovirus type 19 (subgroup D) encodes an HLA-binding protein distinct from that of subgroups B and C. J Virol 70, 2832-2841.
      Wold WS, Cladaras C, Magie SC and Yacoub N (1984) Mapping a new gene that encodes an 11,600-molecular-weight protein in the E3 transcription unit of adenovirus 2. J Virol 52, 307-313.
      Tollefson AE, Ryerse JS, Scaria A, Hermiston TW and Wold WS (1996) The E3-11.6-kDa adenovirus death protein (ADP) is required for efficient cell death: characterization of cells infected with adp mutants. Virology 220, 152-162.
      Chinnadurai G (1983) Adenovirus 2 Ip+ locus codes for a 19 kd tumor antigen that plays an essential role in cell transformation. Cell 33, 759-766.
      Gros A, Martínez-Quintanilla J, Puig C, Guedan S, Molleví DG, Alemany R and Cascallo M (2008) Bioselection of a gain of function mutation that enhances adenovirus 5 release and improves its antitumoral potency. Cancer Res 68, 8928-8937.
      Chee MS, Bankier AT, Beck S, Bohni R, Brown CM, Cerny R, Horsnell T, Hutchison CA, Kouzarides T, Martignetti JA et al. (1990) Analysis of the Protein-Coding Content of the Sequence of Human Cytomegalovirus Strain AD169. In Cytomegaloviruses (McDougall JK, ed), pp. 125-169. Berlin, Heidelberg: Springer Berlin Heidelberg.
      Hawkins LK and Wold WS (1995) The E3-20.5K membrane protein of subgroup B human adenoviruses contains O-linked and complex N-linked oligosaccharides. Virology 210, 335-344.
      Windheim M and Burgert H-G (2002) Characterization of E3/49K, a novel, highly glycosylated E3 protein of the epidemic keratoconjunctivitis-causing adenovirus type 19a. J Virol 76, 755-766.
      Benedict CA, Norris PS, Prigozy TI, Bodmer JL, Mahr JA, Garnett CT, Martinon F, Tschopp J, Gooding LR and Ware CF (2001) Three adenovirus E3 proteins cooperate to evade apoptosis by tumor necrosis factor-related apoptosis-inducing ligand receptor-1 and -2. J Biol Chem 276, 3270-3278.
      Moise AR, Grant JR, Vitalis TZ and Jefferies WA (2002) Adenovirus E3-6.7K maintains calcium homeostasis and prevents apoptosis and arachidonic acid release. J Virol 76, 1578-1587.
      Pérez-Carmona N, Martínez-Vicente P, Farré D, Gabaev I, Messerle M, Engel P and Angulo A (2018) A prominent role of the human cytomegalovirus UL8 glycoprotein in restraining proinflammatory cytokine production by myeloid cells at late times during infection. J Virol 92. https://doi.org/10.1128/JVI.02229-17.
      Frietze KM, Campos SK and Kajon AE (2012) No evidence of a death-like function for species B1 human adenovirus type 3 E3-9K during A549 cell line infection. BMC Res Notes 5, 429.
      Tollefson AE, Scaria A, Saha SK and Wold WS (1992) The 11,600-MW protein encoded by region E3 of adenovirus is expressed early but is greatly amplified at late stages of infection. J Virol 66, 3633-3642.
      Crisostomo L, Soriano AM, Mendez M, Graves D and Pelka P (2019) Temporal dynamics of adenovirus 5 gene expression in normal human cells. PLoS One 14, e0211192.
      Pied N and Wodrich H (2019) Imaging the adenovirus infection cycle. FEBS Lett 593, 3419-3448.
      Farley DC, Brown JL and Leppard KN (2004) Activation of the early-late switch in adenovirus type 5 major late transcription unit expression by L4 gene products. J Virol 78, 1782-1791.
      Wu K, Orozco D and Hearing P (2012) The adenovirus L4-22K protein is multifunctional and is an integral component of crucial aspects of infection. J Virol 86, 10474-10483.
      Doronin K, Toth K, Kuppuswamy M, Ward P, Tollefson AE and Wold WS (2000) Tumor-specific, replication-competent adenovirus vectors overexpressing the adenovirus death protein. J Virol 74, 6147-6155.
      Uil TG, Vellinga J, de Vrij J, van den Hengel SK, Rabelink MJWE, Cramer SJ, Eekels JJM, Ariyurek Y, van Galen M and Hoeben RC (2011) Directed adenovirus evolution using engineered mutator viral polymerases. Nucleic Acids Res. 39, e30.
      Murali VK, Ornelles DA, Gooding LR, Wilms HT, Huang W, Tollefson AE, Wold WSM and Garnett-Benson C (2014) Adenovirus death protein (ADP) is required for lytic infection of human lymphocytes. J Virol 88, 903-912.
      Flomenberg P, Piaskowski V, Harb J, Segura A and Casper JT (1996) Spontaneous, persistent infection of a B-cell lymphoma with adenovirus. J Med Virol 48, 267-272.
      Zhang Y, Huang W, Ornelles DA and Gooding LR (2010) Modeling adenovirus latency in human lymphocyte cell lines. J Virol 84, 8799-8810.
      Prasad V, Suomalainen M, Jasiqi Y, Hemmi S, Hearing P, Hosie L, Burgert H-G and Greber UF (2020) The UPR sensor IRE1α and the adenovirus E3-19K glycoprotein sustain persistent and lytic infections. Nat Commun 11, 1997.
      Zheng Y, Stamminger T and Hearing P (2016) E2f/rb family proteins mediate interferon induced repression of adenovirus immediate early transcription to promote persistent viral infection. PLoS Pathog 12, e1005415.
      Berk AJ (1986) Adenovirus promoters and E1A transactivation. Annu Rev Genet 20, 45-79.
      Siqueira-Silva J, Yeda FP, Favier A-L, Mezin P, Silva ML, Barrella KM, Mehnert DU, Fender P and Hársi CM (2009) Infection kinetics of human adenovirus serotype 41 in HEK 293 cells. Mem Inst Oswaldo Cruz 104, 736-744.
      Lu Z-Z, Zou X-H, Lastinger K, Williams A, Qu J-G and Estes DM (2013) Enhanced growth of recombinant human adenovirus type 41 (HAdV-41) carrying ADP gene. Virus Res 176, 61-68.
      Scaria A, Tollefson AE, Saha SK and Wold WS (1992) The E3-11.6K protein of adenovirus is an Asn-glycosylated integral membrane protein that localizes to the nuclear membrane. Virology 191, 743-753.
      Tollefson AE, Scaria A, Ying B and Wold WSM (2003) Mutations within the ADP (E3-11.6K) protein alter processing and localization of ADP and the kinetics of cell lysis of adenovirus-infected cells. J Virol 77, 7764-7778.
      Mohorko E, Glockshuber R and Aebi M (2011) Oligosaccharyltransferase: the central enzyme of N-linked protein glycosylation. J Inherit Metab Dis 34, 869-878.
      McCaughey J and Stephens DJ (2018) COPII-dependent ER export in animal cells: adaptation and control for diverse cargo. Histochem Cell Biol 150, 119-131.
      Aebi M, Bernasconi R, Clerc S and Molinari M (2010) N-glycan structures: recognition and processing in the ER. Trends Biochem Sci 35, 74-82.
      Helenius A and Aebi M (2001) Intracellular functions of N-linked glycans. Science 291, 2364-2369.
      Helenius A and Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73, 1019-1049.
      Van den Steen P, Rudd PM, Dwek RA and Opdenakker G (1998) Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 33, 151-208.
      Molloy SS, Bresnahan PA, Leppla SH, Klimpel KR and Thomas G (1992) Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. J Biol Chem 267, 16396-16402.
      Nakagawa T, Suzuki-Nakagawa C, Watanabe A, Asami E, Matsumoto M, Nakano M, Ebihara A, Uddin MN and Suzuki F (2017) Site-1 protease is required for the generation of soluble (pro)renin receptor. J Biochem 161, 369-379.
      Rawson RB (2013) The site-2 protease. Biochim Biophys Acta 1828, 2801-2807.
      Ye J, Davé UP, Grishin NV, Goldstein JL and Brown MS (2000) Asparagine-proline sequence within membrane-spanning segment of SREBP triggers intramembrane cleavage by site-2 protease. Proc Natl Acad Sci USA 97, 5123-5128.
      Hausmann J, Ortmann D, Witt E, Veit M and Seidel W (1998) Adenovirus death protein, a transmembrane protein encoded in the E3 region, is palmitoylated at the cytoplasmic tail. Virology 244, 343-351.
      Antonin W, Ungricht R and Kutay U (2011) Traversing the NPC along the pore membrane: targeting of membrane proteins to the INM. Nucleus 2, 87-91.
      Bauer NC, Doetsch PW and Corbett AH (2015) Mechanisms regulating protein localization. Traffic 16, 1039-1061.
      Ying B and Wold WSM (2003) Adenovirus ADP protein (E3-11.6K), which is required for efficient cell lysis and virus release, interacts with human MAD2B. Virology 313, 224-234.
      Kops GJPL, Weaver BAA and Cleveland DW (2005) On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 5, 773-785.
      Hong C-F, Chou Y-T, Lin Y-S and Wu C-W (2009) MAD2B, a novel TCF4-binding protein, modulates TCF4-mediated epithelial-mesenchymal transdifferentiation. J Biol Chem 284, 19613-19622.
      Gupta R, Somyajit K, Narita T, Maskey E, Stanlie A, Kremer M, Typas D, Lammers M, Mailand N, Nussenzweig A et al. (2018) DNA repair network analysis reveals shieldin as a key regulator of NHEJ and PARP inhibitor sensitivity. Cell 173, 972-988.e23.
      Hara K, Hashimoto H, Murakumo Y, Kobayashi S, Kogame T, Unzai S, Akashi S, Takeda S, Shimizu T and Sato M (2010) Crystal structure of human REV7 in complex with a human REV3 fragment and structural implication of the interaction between DNA polymerase zeta and REV1. J Biol Chem 285, 12299-12307.
      Murakumo Y, Roth T, Ishii H, Rasio D, Numata S, Croce CM and Fishel R (2000) A human REV7 homolog that interacts with the polymerase zeta catalytic subunit hREV3 and the spindle assembly checkpoint protein hMAD2. J Biol Chem 275, 4391-4397.
      Murakumo Y, Ogura Y, Ishii H, Numata S, Ichihara M, Croce CM, Fishel R and Takahashi M (2001) Interactions in the error-prone postreplication repair proteins hREV1, hREV3, and hREV7. J Biol Chem 276, 35644-35651.
      Zhang L, Yang S-H and Sharrocks AD (2007) Rev7/MAD2B links c-Jun N-terminal protein kinase pathway signaling to activation of the transcription factor Elk-1. Mol Cell Biol 27, 2861-2869.
      Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW et al. (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25, 486-541.
      Vitale M, Zamai L, Mazzotti G, Cataldi A and Falcieri E (1993) Differential kinetics of propidium iodide uptake in apoptotic and necrotic thymocytes. Histochemistry 100, 223-229.
      Lötzerich M, Roulin PS, Boucke K, Witte R, Georgiev O and Greber UF (2018) Rhinovirus 3C protease suppresses apoptosis and triggers caspase-independent cell death. Cell Death Dis 9, 272.
      Silke J, Rickard JA and Gerlic M (2015) The diverse role of RIP kinases in necroptosis and inflammation. Nat Immunol 16, 689-697.
      Zou A, Atencio I, Huang W-M, Horn M and Ramachandra M (2004) Overexpression of adenovirus E3-11.6K protein induces cell killing by both caspase-dependent and caspase-independent mechanisms. Virology 326, 240-249.
      Abou El Hassan MAI, van der Meulen-Muileman I, Abbas S and Kruyt FAE (2004) Conditionally replicating adenoviruses kill tumor cells via a basic apoptotic machinery-independent mechanism that resembles necrosis-like programmed cell death. J Virol 78, 12243-12251.
      Braithwaite AW and Russell IA (2001) Induction of cell death by adenoviruses. Apoptosis 6, 359-370.
      Han J, Sabbatini P, Perez D, Rao L, Modha D and White E (1996) The E1B 19K protein blocks apoptosis by interacting with and inhibiting the p53-inducible and death-promoting Bax protein. Genes Dev 10, 461-477.
      Ito H, Aoki H, Kühnel F, Kondo Y, Kubicka S, Wirth T, Iwado E, Iwamaru A, Fujiwara K, Hess KR et al. (2006) Autophagic cell death of malignant glioma cells induced by a conditionally replicating adenovirus. J Natl Cancer Inst 98, 625-636.
      Jiang H, Gomez-Manzano C, Aoki H, Alonso MM, Kondo S, McCormick F, Xu J, Kondo Y, Bekele BN, Colman H et al. (2007) Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: role of autophagic cell death. J Natl Cancer Inst 99, 1410-1414.
      Jiang H, White EJ, Ríos-Vicil CI, Xu J, Gomez-Manzano C and Fueyo J (2011) Human adenovirus type 5 induces cell lysis through autophagy and autophagy-triggered caspase activity. J Virol 85, 4720-4729.
      Rao L, Debbas M, Sabbatini P, Hockenbery D, Korsmeyer S and White E (1992) The adenovirus E1A proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bcl-2 proteins. Proc Natl Acad Sci USA 89, 7742-7746.
      Rao L, Perez D and White E (1996) Lamin proteolysis facilitates nuclear events during apoptosis. J Cell Biol 135, 1441-1455.
      Yun C-O, Kim E, Koo T, Kim H, Lee Y and Kim J-H (2005) ADP-overexpressing adenovirus elicits enhanced cytopathic effect by induction of apoptosis. Cancer Gene Ther 12, 61-71.
      White E (2001) Regulation of the cell cycle and apoptosis by the oncogenes of adenovirus. Oncogene 20, 7836-7846.
      Cuconati A and White E (2002) Viral homologs of BCL-2: role of apoptosis in the regulation of virus infection. Genes Dev 16, 2465-2478.
      Jiang H, White EJ, Gomez-Manzano C and Fueyo J (2008) Adenovirus’s last trick: you say lysis, we say autophagy. Autophagy 4, 118-120.
      Klein SR, Piya S, Lu Z, Xia Y, Alonso MM, White EJ, Wei J, Gomez-Manzano C, Jiang H and Fueyo J (2015) C-Jun N-terminal kinases are required for oncolytic adenovirus-mediated autophagy. Oncogene 34, 5295-5301.
      Piya S, White EJ, Klein SR, Jiang H, McDonnell TJ, Gomez-Manzano C and Fueyo J (2011) The E1B19K oncoprotein complexes with Beclin 1 to regulate autophagy in adenovirus-infected cells. PLoS One 6, e29467.
      Rodriguez-Rocha H, Gomez-Gutierrez JG, Garcia-Garcia A, Rao X-M, Chen L, McMasters KM and Zhou HS (2011) Adenoviruses induce autophagy to promote virus replication and oncolysis. Virology 416, 9-15.
      Cao Y and Klionsky DJ (2007) Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res 17, 839-849.
      Kleinberger T (2019) Biology of the adenovirus E4orf4 protein: from virus infection to cancer cell death. FEBS Lett 594, 1891-1917.
      Dziengelewski C, Rodrigue M-A, Caillier A, Jacquet K, Boulanger M-C, Bergeman J, Fuchs M, Lambert H, Laprise P, Richard DE et al. (2020) Adenoviral protein E4orf4 interacts with the polarity protein Par3 to induce nuclear rupture and tumor cell death. J Cell Biol 219, e201805122.
      Rowe WP, Hartley JW, Roizman B and Levy HB (1958) Characterization of a factor formed in the course of adenovirus infection of tissue cultures causing detachment of cells from glass. J Exp Med 108, 713-729.
      Wickham TJ, Mathias P, Cheresh DA and Nemerow GR (1993) Integrins αvβ3 and αvβ5 promote adenovirus internalization but not virus attachment. Cell 73, 309-319.
      Trotman LC, Achermann DP, Keller S, Straub M and Greber UF (2003) Non-classical export of an adenovirus structural protein. Traffic 4, 390-402.
      Walters RW, Freimuth P, Moninger TO, Ganske I, Zabner J and Welsh MJ (2002) Adenovirus fiber disrupts CAR-mediated intercellular adhesion allowing virus escape. Cell 110, 789-799.
      Eichholz K, Bru T, Tran TTP, Fernandes P, Welles H, Mennechet FJD, Manel N, Alves P, Perreau M and Kremer EJ (2016) Immune-complexed adenovirus induce AIM2-mediated pyroptosis in human dendritic cells. PLoS Pathog 12, e1005871.
      Gonzalez ME and Carrasco L (2003) Viroporins. FEBS Lett 552, 28-34.
      Nieva JL, Madan V and Carrasco L (2012) Viroporins: structure and biological functions. Nat Rev Microbiol 10, 563-574.
      Bornberg-Bauer E, Rivals E and Vingron M (1998) Computational approaches to identify leucine zippers. Nucleic Acids Res 26, 2740-2746.
      Hakoshima T (2001) Leucine Zippers. In eLS, John Wiley & Sons Ltd, ed. John Wiley & Sons, Ltd, Chichester.
      Puntener D, Engelke MF, Ruzsics Z, Strunze S, Wilhelm C and Greber UF (2011) Stepwise loss of fluorescent core protein V from human adenovirus during entry into cells. J Virol 85, 481-496.
      Andriasyan V, Yakimovich A, Georgi F, Petkidis A, Witte R, Puntener D and Greber UF (2019) Deep learning of virus infections reveals mechanics of lytic cells. BioRxiv. “[PREPRINT]”.
      Blaskovic S, Blanc M and van der Goot FG (2013) What does S-palmitoylation do to membrane proteins? FEBS J 280, 2766-2774.
      Munro S (1995) An investigation of the role of transmembrane domains in Golgi protein retention. EMBO J 14, 4695-4704.
      Singh S and Mittal A (2016) Transmembrane domain lengths serve as signatures of organismal complexity and viral transport mechanisms. Sci Rep 6, 22352.
      Liu T-C, Hallden G, Wang Y, Brooks G, Francis J, Lemoine N and Kirn D (2004) An E1B-19 kDa gene deletion mutant adenovirus demonstrates tumor necrosis factor-enhanced cancer selectivity and enhanced oncolytic potency. Mol Ther 9, 786-803.
      McGlade CJ, Tremblay ML, Yee SP, Ross R and Branton PE (1987) Acylation of the 176R (19-kilodalton) early region 1B protein of human adenovirus type 5. J Virol 61, 3227-3234.
      White E, Blose SH and Stillman BW (1984) Nuclear envelope localization of an adenovirus tumor antigen maintains the integrity of cellular DNA. Mol Cell Biol 4, 2865-2875.
      Subramanian T, Vijayalingam S and Chinnadurai G (2006) Genetic identification of adenovirus type 5 genes that influence viral spread. J Virol 80, 2000-2012.
      Thimmappaya B, Weinberger C, Schneider RJ and Shenk T (1982) Adenovirus VAI RNA is required for efficient translation of viral mRNAs at late times after infection. Cell 31, 543-551.
      Gingras M-C, Champagne C, Roy M and Lavoie JN (2002) Cytoplasmic death signal triggered by SRC-mediated phosphorylation of the adenovirus E4orf4 protein. Mol Cell Biol 22, 41-56.
      Livne A, Shtrichman R and Kleinberger T (2001) Caspase activation by adenovirus e4orf4 protein is cell line specific and is mediated by the death receptor pathway. J Virol 75, 789-798.
      Marcellus RC, Lavoie JN, Boivin D, Shore GC, Ketner G and Branton PE (1998) The early region 4 orf4 protein of human adenovirus type 5 induces p53-independent cell death by apoptosis. J Virol 72, 7144-7153.
      Miron M-J, Blanchette P, Groitl P, Dallaire F, Teodoro JG, Li S, Dobner T and Branton PE (2009) Localization and importance of the adenovirus E4orf4 protein during lytic infection. J Virol 83, 1689-1699.
      Mui MZ, Kucharski M, Miron M-J, Hur WS, Berghuis AM, Blanchette P and Branton PE (2013) Identification of the adenovirus E4orf4 protein binding site on the B55α and Cdc55 regulatory subunits of PP2A: implications for PP2A function, tumor cell killing and viral replication. PLoS Pathog 9, e1003742.
      Robert A, Miron M-J, Champagne C, Gingras M-C, Branton PE and Lavoie JN (2002) Distinct cell death pathways triggered by the adenovirus early region 4 ORF 4 protein. J Cell Biol 158, 519-528.
      Russell SJ and Peng K-W (2017) Oncolytic virotherapy: a contest between apples and oranges. Mol Ther 25, 1107-1116.
      Yamamoto M and Curiel DT (2010) Current issues and future directions of oncolytic adenoviruses. Mol Ther 18, 243-250.
      DePace N (1912) Sulla scomparsa di un enorme cancro vegetante del collo dell’utero senza cura chirurgica. Ginecologia 9, 82-89.
      Bluming AZ and Ziegler JL (1971) Regression of Burkitt’s lymphoma in association with measles infection. Lancet 2, 105-106.
      Hoster HA, Zanes RP and Von Haam E (1949) Studies in Hodgkin’s syndrome; the association of viral hepatitis and Hodgkin's disease; a preliminary report. Cancer Res 9, 473-480.
      Zygiert Z (1971) Hodgkin’s disease: remissions after measles. Lancet 1, 593.
      Huebner RJ, Rowe WP, Schatten WE, Smith RR and Thomas LB (1956) Studies on the use of viruses in the treatment of carcinoma of the cervix. Cancer 9, 1211-1218.
      Russell SJ, Peng K-W and Bell JC (2012) Oncolytic virotherapy. Nat Biotechnol 30, 658-670.
      Hilleman MR and Werner JH (1954) Recovery of new agent from patients with acute respiratory illness. Proc Soc Exp Biol Med 85, 183-188.
      Rowe WP, Huebner RJ, Gilmore LK, Parrott RH and Ward TG (1953) Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc Soc Exp Biol Med 84, 570-573.
      Farrera-Sal M, Fillat C and Alemany R (2020) Effect of transgene location, transcriptional control elements and transgene features in armed oncolytic adenoviruses. Cancers 12, 1034.
      Gros A and Guedan S (2010) Adenovirus release from the infected cell as a key factor for adenovirus oncolysis. Open Gene Ther J 3, 24-30.
      Stepanenko AA and Chekhonin VP (2018) A compendium of adenovirus genetic modifications for enhanced replication, oncolysis, and tumor immunosurveillance in cancer therapy. Gene 679, 11-18.
      Toth K, Dhar D and Wold WSM (2010) Oncolytic (replication-competent) adenoviruses as anticancer agents. Expert Opin Biol Ther 10, 353-368.
      Howe JA, Mymryk JS, Egan C, Branton PE and Bayley ST (1990) Retinoblastoma growth suppressor and a 300-kDa protein appear to regulate cellular DNA synthesis. Proc Natl Acad Sci USA 87, 5883-5887.
      Doronin K, Kuppuswamy M, Toth K, Tollefson AE, Krajcsi P, Krougliak V and Wold WS (2001) Tissue-specific, tumor-selective, replication-competent adenovirus vector for cancer gene therapy. J Virol 75, 3314-3324.
      Ramachandra M, Rahman A, Zou A, Vaillancourt M, Howe JA, Antelman D, Sugarman B, Demers GW, Engler H, Johnson D et al. (2001) Re-engineering adenovirus regulatory pathways to enhance oncolytic specificity and efficacy. Nat Biotechnol 19, 1035-1041.
      Kim E, Kim JH, Koo T, Sohn JH and Yun CO (2003) Increased cytopathic effect of replicating adenovirus expressing adenovirus death protein. Cancer Res Treat 35, 425-432.
      Lee H, Kim J, Lee B, Chang JW, Ahn J, Park JO, Choi J, Yun CO, Kim BS and Kim JH (2000) Oncolytic potential of E1B 55 kDa-deleted YKL-1 recombinant adenovirus: correlation with p53 functional status. Int J Cancer 88, 454-463.
      Barton KN, Paielli D, Zhang Y, Koul S, Brown SL, Lu M, Seely J, Kim JH and Freytag SO (2006) Second-generation replication-competent oncolytic adenovirus armed with improved suicide genes and ADP gene demonstrates greater efficacy without increased toxicity. Mol Ther 13, 347-356.
      Freytag SO, Rogulski KR, Paielli DL, Gilbert JD and Kim JH (1998) A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy. Hum Gene Ther 9, 1323-1333.
      Khare R, Chen CY, Weaver EA and Barry MA (2011) Advances and future challenges in adenoviral vector pharmacology and targeting. Curr Gene Ther 11, 241-258.
      Marelli G, Howells A, Lemoine NR and Wang Y (2018) Oncolytic viral therapy and the immune system: a double-edged sword against cancer. Front Immunol 9, 866.
      Breitbach CJ, Paterson JM, Lemay CG, Falls TJ, McGuire A, Parato KA, Stojdl DF, Daneshmand M, Speth K, Kirn D et al. (2007) Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow. Mol Ther 15, 1686-1693.
      Cervera-Carrascon V, Havunen R and Hemminki A (2019) Oncolytic adenoviruses: a game changer approach in the battle between cancer and the immune system. Expert Opin Biol Ther 19, 443-455.
      Machiels J-P, Salazar R, Rottey S, Duran I, Dirix L, Geboes K, Wilkinson-Blanc C, Pover G, Alvis S, Champion B et al. (2019) A phase 1 dose escalation study of the oncolytic adenovirus enadenotucirev, administered intravenously to patients with epithelial solid tumors (EVOLVE). J Immunother Cancer 7, 20.
      Rosewell Shaw A and Suzuki M (2016) Recent advances in oncolytic adenovirus therapies for cancer. Curr Opin Virol 21, 9-15.
      Suomalainen M, Prasad V, Kannan A and Greber UF (2020) Cell-to-cell and genome-to-genome variability of Adenovirus transcription tuned by the cell cycle. BioRxiv. “[PREPRINT]”.
      Witte R, Andriasyan V, Georgi F, Yakimovich A and Greber UF (2018) Concepts in light microscopy of viruses. Viruses 10, 202.
      Chen S, Yao Y, Zhang Y and Fan G (2020) CRISPR system: discovery, development and off-target detection. Cell Signal 70, 109577.
      Lian J, Schultz C, Cao M, HamediRad M and Zhao H (2019) Multi-functional genome-wide CRISPR system for high throughput genotype-phenotype mapping. Nat Commun 10, 5794.
      Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horwitz MS, Crowell RL and Finberg RW (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275, 1320-1323.
      Burckhardt CJ, Suomalainen M, Schoenenberger P, Boucke K, Hemmi S and Greber UF (2011) Drifting motions of the adenovirus receptor CAR and immobile integrins initiate virus uncoating and membrane lytic protein exposure. Cell Host Microbe 10, 105-117.
      Kotha PLN, Sharma P, Kolawole AO, Yan R, Alghamri MS, Brockman TL, Gomez-Cambronero J and Excoffon KJDA (2015) Adenovirus entry from the apical surface of polarized epithelia is facilitated by the host innate immune response. PLoS Pathog 11, e1004696.
      Lütschg V, Boucke K, Hemmi S and Greber UF (2011) Chemotactic antiviral cytokines promote infectious apical entry of human adenovirus into polarized epithelial cells. Nat Commun 2, 391.
      Nagel H, Maag S, Tassis A, Nestlé FO, Greber UF and Hemmi S (2003) The alphavbeta5 integrin of hematopoietic and nonhematopoietic cells is a transduction receptor of RGD-4C fiber-modified adenoviruses. Gene Ther 10, 1643-1653.
      Greber UF (2016) Virus and host mechanics support membrane penetration and cell entry. J Virol 90, 3802-3805.
      Nakano MY, Boucke K, Suomalainen M, Stidwill RP and Greber UF (2000) The first step of adenovirus type 2 disassembly occurs at the cell surface, independently of endocytosis and escape to the cytosol. J Virol 74, 7085-7095.
      Luisoni S, Suomalainen M, Boucke K, Tanner LB, Wenk MR, Guan XL, Grzybek M, Coskun Ü and Greber UF (2015) Co-option of membrane wounding enables virus penetration into cells. Cell Host Microbe 18, 75-85.
      Wodrich H, Henaff D, Jammart B, Segura-Morales C, Seelmeir S, Coux O, Ruzsics Z, Wiethoff CM and Kremer EJ (2010) A capsid-encoded PPxY-motif facilitates adenovirus entry. PLoS Pathog 6, e1000808.
      Greber UF, Willetts M, Webster P and Helenius A (1993) Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75, 477-486.
      Meier O, Boucke K, Hammer SV, Keller S, Stidwill RP, Hemmi S and Greber UF (2002) Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. J Cell Biol 158, 1119-1131.
      Luisoni S, Bauer M, Prasad V, Boucke K, Papadopoulos C, Meyer H, Hemmi S, Suomalainen M and Greber U (2016) Endosomophagy clears disrupted early endosomes but not virus particles during virus entry into cells. Matters 9. https://doi.org/10.19185/matters.201606000013.
      Suomalainen M, Luisoni S, Boucke K, Bianchi S, Engel DA and Greber UF (2013) A direct and versatile assay measuring membrane penetration of adenovirus in single cells. J Virol 87, 12367-12379.
      Wiethoff CM and Nemerow GR (2015) Adenovirus membrane penetration: tickling the tail of a sleeping dragon. Virology 479-480, 591-599.
      Gazzola M, Burckhardt CJ, Bayati B, Engelke M, Greber UF and Koumoutsakos P (2009) A stochastic model for microtubule motors describes the in vivo cytoplasmic transport of human adenovirus. PLoS Comput Biol 5, e1000623.
      Trotman LC, Mosberger N, Fornerod M, Stidwill RP and Greber UF (2001) Import of adenovirus DNA involves the nuclear pore complex receptor CAN/Nup214 and histone H1. Nat Cell Biol 3, 1092-1100.
      Bauer M, Flatt JW, Seiler D, Cardel B, Emmenlauer M, Boucke K, Suomalainen M, Hemmi S and Greber UF (2019) The e3 ubiquitin ligase mind bomb 1 controls adenovirus genome release at the nuclear pore complex. Cell Rep 29, 3785-3795.e8.
      Strunze S, Engelke MF, Wang I-H, Puntener D, Boucke K, Schleich S, Way M, Schoenenberger P, Burckhardt CJ and Greber UF (2011) Kinesin-1-mediated capsid disassembly and disruption of the nuclear pore complex promote virus infection. Cell Host Microbe 10, 210-223.
      Berk AJ (2005) Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene 24, 7673-7685.
      Atasheva S, Yao J and Shayakhmetov DM (2019) Innate immunity to adenovirus: lessons from mice. FEBS Lett 593, 3461-3483.
      Kleinberger T (2015) Mechanisms of cancer cell killing by the adenovirus E4orf4 protein. Viruses 7, 2334-2357.
      Sohn S-Y and Hearing P (2019) Adenoviral strategies to overcome innate cellular responses to infection. FEBS Lett 593, 3484-3495.
      Charman M, Herrmann C and Weitzman MD (2019) Viral and cellular interactions during adenovirus DNA replication. FEBS Lett 593, 3531-3550.
      Hidalgo P and Gonzalez RA (2019) Formation of adenovirus DNA replication compartments. FEBS Lett 593, 3518-3530.
      Lynch KL, Gooding LR, Garnett-Benson C, Ornelles DA and Avgousti DC (2019) Epigenetics and the dynamics of chromatin during adenovirus infections. FEBS Lett 593, 3551-3570.
      Puvion-Dutilleul F, Besse S, Pichard E and Cajean-Feroldi C (1998) Release of viruses and viral DNA from nucleus to cytoplasm of HeLa cells at late stages of productive adenovirus infection as revealed by electron microscope in situ hybridization. Biol Cell 90, 5-38.
      Martín-González N, Hernando-Pérez M, Condezo GN, Pérez-Illana M, Šiber A, Reguera D, Ostapchuk P, Hearing P, San Martín C and de Pablo PJ (2019) Adenovirus major core protein condenses DNA in clusters and bundles, modulating genome release and capsid internal pressure. Nucleic Acids Res 47, 9231-9242.
      Wang I-H, Burckhardt CJ, Yakimovich A and Greber UF (2018). Imaging, tracking and computational analyses of virus entry and egress with the cytoskeleton. Viruses 10, 166.
    • Contributed Indexing:
      Keywords: adenovirus death protein; apoptosis; cancer therapy; cell death; cell lysis; human adenovirus; membrane rupture; oncolytic viruses; virus egress; virus transmission
    • Accession Number:
      0 (Adenovirus E3 Proteins)
      0 (MAD2L2 protein, human)
      0 (Mad2 Proteins)
      0 (adenovirus death protein, Adenovirus)
    • Publication Date:
      Date Created: 20200531 Date Completed: 20210421 Latest Revision: 20210421
    • Publication Date:
      20240829
    • Accession Number:
      10.1002/1873-3468.13848
    • Accession Number:
      32472693