Menu
×
West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 5 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 1 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 5 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 5 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 5 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 1 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 5 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. - 5 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. - 5 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 2 p.m.
*open the 2nd and 4th Saturday
*open the 2nd and 4th Saturday
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 1 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 5 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 5 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 5 p.m.
Phone: (843) 795-6679
Main Library
9 a.m. - 5 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Today's Hours
West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 5 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 1 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 5 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 5 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 5 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 1 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 5 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. - 5 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. - 5 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 2 p.m.
*open the 2nd and 4th Saturday
*open the 2nd and 4th Saturday
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 1 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 5 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 5 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 5 p.m.
Phone: (843) 795-6679
Main Library
9 a.m. - 5 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Variation of Microbial Diversity in Catastrophic Oil Spill Area in Marine Ecosystem and Hydrocarbon Degradation of UCMs (Unresolved Complex Mixtures) by Marine Indigenous Bacteria.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Maity JP;Maity JP;Maity JP; Huang YH; Huang YH; Lin HF; Lin HF; Chen CY; Chen CY; Chen CY
- Source:
Applied biochemistry and biotechnology [Appl Biochem Biotechnol] 2021 May; Vol. 193 (5), pp. 1266-1283. Date of Electronic Publication: 2020 May 23.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Humana Press Country of Publication: United States NLM ID: 8208561 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0291 (Electronic) Linking ISSN: 02732289 NLM ISO Abbreviation: Appl Biochem Biotechnol Subsets: MEDLINE
- Publication Information: Original Publication: Clifton, N.J. : Humana Press, c1981-
- Subject Terms:
- Abstract: The study targeted an assessment of microbial diversity during oil spill in the marine ecosystem (Kaohsiung port, Taiwan) and screened dominant indigenous bacteria for oil degradation, as well as UCM weathering. DO was detected lower and TDS/conductivity was observed higher in oil-spilled area, compared to the control, where a significant correlation (R 2 = 1; P < 0.0001) was noticed between DO and TDS. The relative abundance (RA) of microbial taxa and diversities (> 90% similarity by NGS) were found higher in the boundary region of spilled-oily-water (site B) compared to the control (site C) and center of the oil spill area (site A) (B
RA/diversity > CRA/diversity > ARA/diversity ). The isolated indigenous bacteria, such as Staphylococcus saprophyticus (CYCTW1), Staphylococcus saprophyticus (CYCTW2), and Bacillus megaterium (CYCTW3) degraded the C10 -C30 including UCM of oil, where Bacillus sp. are exhibited more efficient, which are applicable for environmental cleanup of the oil spill area. Thus, the marine microbial diversity changes due to oil spill and the marine microbial community play an important role to biodegrade the oil, besides restoring the catastrophic disorders through changing their diversity by ecological selection and adaptation process. - References: Zhang, B., Matchinski, E., Chen, B., Ye, X., Jing, L., & Lee, K. (2019). Marine oil spills—Oil pollution, sources and effects. In World seas: An environmental evaluation (2nd ed.). In C. Sheppard (Ed.), Volume III: Ecological issues and environmental impacts (2nd ed., pp. 391–406). Imprint: Academic Press. Elsevier Ltd.
Liu, Y., Liu, Y., Li, N., Lou, Y., & Zhao, X. (2019). Effect of oil spill stress on fatty acid stable carbon isotope composition of Ulva pertusa. Science of the Total Environment, 649, 1443–1451.
Sandrini-Neto, L., Pereira, L., Martins, C. C., Silva de Assis, H. C., Camus, L., & Lana, P. C. (2016). Antioxidant responses in estuarine invertebrates exposed to repeated oil spills: Effects of frequency and dosage in a field manipulative experiment. Aquatic Toxicology, 177, 237–249. (PMID: 27309312)
Duke, N. C. (2016). Oil spill impacts on mangroves: Recommendations for operational planning and action based on a global review. Marine Pollution Bulllletin, 109(2), 700–715.
Jenny, M. J., Walton, W. C., Payton, S. L., Powers, J. M., Findlay, R. H., O'Shields, B., Diggins, K., Pinkerton, M., Porter, D., Crane, D. M., Tapley, J., & Cunningham, C. (2016). Transcriptomic evaluation of the american oyster, crassostrea virginica, deployed during the Deepwater horizon oil spill: Evidence of an active hydrocarbon response pathway. Marine Environmental Research, 120, 166–181. (PMID: 27564836)
Olson, G. M., Meyer, B. M., & Portier, R. J. (2016). Assessment of the toxic potential of polycyclic aromatic hydrocarbons (PAHs) affecting gulf menhaden (Brevoortia patronus) harvested from waters impacted by the BP Deepwater horizon spill. Chemosphere, 145, 322–328. (PMID: 26692508)
Zhu, L., Qu, K., Xia, B., Sun, X., & Chen, B. (2016). Transcriptomic response to water accommodated fraction of crude oil exposure in the gill of Japanese flounder, Paralichthys olivaceus. Marine Pollution Bulletin, 106(1–2), 283–291. (PMID: 27001715)
DeLorenzo, M. E., Eckmann, C. A., Chung, K. W., Key, P. B., & Fulton, M. H. (2016). Effects of salinity on oil dispersant toxicity in the grass shrimp, Palaemonetes pugio. Ecotoxicology and Environmental Safety, 134(P1), 256–263.
Joye, S. B., Bracco, A., Özgökmen, T. M., Chanton, J. P., Grosell, M., MacDonald, I. R., Cordes, E. E., Montoya, J. P., & Passow, U. (2016). The Gulf of Mexico ecosystem, six years after the Macondo oil well blowout. Deep Sea Research Part II: Topical Studies in Oceanography, 129, 4–19.
Anderson, C. M. M., & LaBelle, R. P. (2000). Update of comparative occurrence rates for offshore oil spills. Spill Science & Technology Bulletin, 6(5–6), 303–321.
Harding, V., Camp, J., Morgan, L. J., & Gryko, J. (2016). Oil residue contamination of continental shelf sediments of the Gulf of Mexico. Marine Pollution Bulletin, 113(1–2), 488–495. (PMID: 27477068)
Smith, R. H., Johns, E. M., Goni, G. J., Trinanes, J., Lumpkin, R., Wood, A. M., Kelble, C. R., Cummings, S. R., Lamkin, J. T., & Privoznik, S. (2014). Oceanographic conditions in the Gulf of Mexico in July 2010, during the Deepwater Horizon oil spill. Continental Shelf Research, 77, 118–131.
Bergin, T. (2012). Spills and spin: The inside story of BP. London: Random House.
Vieites, D. R., Nieto-Román, S., Palanca, A., Ferrer, X., & Vences, M. (2004). European Atlantic: The hottest oil spill hotspot worldwide. Naturwissenschaften, 91(11), 535–538. (PMID: 15490095)
Madrid, J. A. J., García-Olivares A., Poy J. B., & García-Ladona E. (2015). Managing large oil spills in the Mediterranean. 1–27. Available from: https://arxiv.org/pdf/1510.00287.pdf . Accessed October 21, 2019.
Nezhad, M. M., Groppi, D., Laneve, G., Marzialetti, P., & Piras, G. (2018). Oil spill detection analyzing “Sentinel 2” satellite images: a Persian Gulf case study. Proceedings of the 3rd World Congress on Civil, Structural, and Environmental Engineering (CSEE’18) Budapest, Hungary – April 8–10, 2018; Paper No. AWSPT 134; Available from https://doi.org/10.11159/awspt18.134 .
Barry, C. (2007). Slick death: Oil-spill treatment kills coral. Science News, 172, 67.
Wu, M. N., Maity, J. P., Bundschuh, J., Li, C. F., Lee, C. R., Hsu, C. M., Lee, W. C., Huang, C. H., & Chen, C. Y. (2017). Green technological approach to synthesis hydrophobic stable crystalline calcite particles with one-pot synthesis for oil-water separation during oil spill cleanup. Water Research, 123, 332–344. (PMID: 28683374)
Li, X. B., Liu, J. T., Wang, Y.-T., Wamg, C.-Y., & Zhou, X.-H. (2007). Separation of oil from wastewater by column flotation. Journal of China University of Mining and Technology, 17(4), 0546–0551.
Al-Shamrani, A. A., James, A., & Xiao, H. (2002). Separation of oil from water by dissolved air flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 209(1), 15–26.
Harvey, A. C., & Stokes, V. K. (1973). Evaluation of a unique centrifuge for separation of oil from ship discharge water. International Oil Spill Conference Proceedings, 1973(1), 391–402.
Bai, Z. S., Wang, H. L., & Tu, S. T. (2011). Oil–water separation using hydrocyclones enhanced by air bubbles. Chemical Engineering Research and Design, 89(1), 55–59.
Lin, Q., Mendelssohn, I. A., Carney, K., Bryner, N. P., & Walton, W. D. (2002). Salt marsh recovery and oil spill remediation after in-situ burning: Effects of water depth and burn duration. Environmental Science and Technology, 36(4), 576–581. (PMID: 11878369)
Lin, Q., Mendelssohn, I. A., Carney, K., Miles, S. M., Bryner, N. P., & Walton, W. D. (2005). In-situ burning of oil in coastal marshes. 2. Oil spill cleanup efficiency as a function of oil type, marsh type, and water depth. Environmental Science Technology, 39(6), 1855–1860. (PMID: 15819247)
Guénette, C. C. (1997). In-situ burning: An alternative approach to oil spill clean-up in arctic waters. IDISOPE-I-97-242 Publisher international society of offshore and polar engineers source. The seventh international offshore and polar engineering conference, 25-30 May, Honolulu, Hawaii, USA.
Potter, S., & Buist, I. (2008). In-situ burning for oil spills in Arctic waters: State-of-the-art and future research needs. In W. F. Davidson, K. Lee, & A. Cogswell (Eds.), Oil spill response: A global perspective. NATO Science for peace and security series C: Environmental security (pp. 23–39). Dordrecht: Springer.
Fritt-Rasmussen, J., Wegeberg, S., & Gustavson, K. (2015). Review on burn residues from in situ burning of oil spills in relation to Arctic waters. Water Air & Soil Pollution, 226(10), 329.
Chapman, H., Purnell, K., Law, R. J., & Kirby, M. F. (2007). The use of chemical dispersants to combat oil spills at sea: A review of practice and research needs in Europe. Marine Pollution Bulletin, 54(7), 827–838. (PMID: 17499814)
Dave, D., & Ghaly, A. E. (2011). Remediation technologies for marine oil Spills: A critical review and comparative analysis. American Journal of Environmental Sciences, 7(5), 423–440.
Gough, M. A., & Rowland, S. J. (1990). Characterization of unresolved complex mixtures of hydrocarbons in petroleum. Nature, 344(6267), 648–650.
Guo, P., He, S., Zhu, S., Chai, D., Yin, S., Dai, W., & Zhang, W. (2014). Formation and identification of unresolved complex mixtures in lacustrine biodegraded oil from Nanxiang basin, China. The Scientific World Journal, 2014(102576), 1–10.
Ventura, G. T., Kenig, F., Reddy, C. M., Frysinger, G. S., Nelson, R. K., Mooy, B. V., & Gaines, R. B. (2008). Analysis of unresolved complex mixtures of hydrocarbons extracted from Late Archean sediments by comprehensive two-dimensional gas chromatography (GC×GC). Organic Geochemistry, 39(7), 846–867.
Melbye, A. G., Brakstad, O. G., Hokstad, J. N., Gregersen, I. K., Hansen, B. H., Booth, A. M., Rowland, S. J., & Tollefsen, K. E. (2009). Chemical and toxicological characterization of an unresolved complex mixture-rich biodegraded crude oil. Environmental Toxicology and Chemistry, 28(9), 1815–1824. (PMID: 19413365)
Wang, H. T., Zhang, S. C., Weng, N., Wei, X. F., Zhu, G. Y., Yu, H., Bi, L. N., & Ma, W. L. (2013). Insight of unresolved complex mixtures of saturated hydrocarbons in heavy oil via GC×GC-TOFMS analysis. SCIENCE CHINA Chemistry, 56(2), 262–270.
Tran, T. C., Logan, G. A., Grosjean, E., Ryan, D., & Marriott, P. J. (2010). Use of comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for the characterization of biodegradation and unresolved complex mixtures in petroleum. Geochimica et Cosmochimica Acta, 74(22), 6468–6484.
Yang, S. Z., Lin, H. J., WEI, Z., He, R. X., Ji, Y. J., Li, X. M., & Yu, S. P. (2009). Bioremediation of oil spills in cold environments: A review. Pedosphere, 19(3), 371–381.
Pasumarthi, R., Chandrasekaran, S., & Mutnuri, S. (2013). Biodegradation of crude oil by Pseudomonas aeruginosa and Escherichia fergusonii isolated from the Goan coast. Marine Pollution Bulletin, 76(1–2), 276–282. (PMID: 24045123)
Bovio, E., Gnavi, G., Prigione, V., Spina, F., Denaro, R., Yakimov, M., Calogero, R., Crisafi, F., & Varese, G. C. (2017). The culturable mycobiota of a Mediterranean marine site after an oil spill: Isolation, identification and potential application in bioremediation. Science of the Total Environment, 576, 310–318.
Kasai, Y., Kishira, H., Sasaki, T., Syutsubo, K., Watanabe, K., & Harayama, S. (2002). Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environmental Microbiology, 4(3), 141–147. (PMID: 12000314)
Crisafi, F., Genovese, M., Smedile, F., Russo, D., Catalfamo, M., Yakimov, M., Giuliano, L., & Denaro, R. (2016). Bioremediation technologies for polluted seawater sampled after an oil-spill in Taranto Gulf (Italy): A comparison of biostimulation, bioaugmentation and use of a washing agent in microcosm studies. Marine Pollution Bulletin, 106(1–2), 119–126. (PMID: 26992747)
Jean, J. S., Lee, M. K., Wang, S. M., Chattopadhyay, P., & Maity, J. P. (2008). Effects of inorganic nutrient levels on the biodegradation of benzene, toluene, and xylene (BTX) by Pseudomonas spp. in a laboratory porous media sand aquifer model. Bioresource Technology, 99(16), 7807–7815. (PMID: 18329875)
Liu, J. H., Maity, J. P., Jean, J. S., Chen, C. Y., Chen, C. C., & Ho, S. Y. (2010). Biodegradation of benzene by pure and mixed cultures of Bacillus spp. World Journal of Microbiology and Biotechnology, 26(9), 1557–1567.
Majumder, D., Maity, J. P., Tseng, M. J., Nimje, V. R., Chen, H. R., Chen, C. C., Chang, Y. F., Yang, T. C., & Chen, C. C. (2014). Electricity generation and wastewater treatment of oil refinery in microbial fuel cells using Pseudomonas putida. International Journal of Molecular Sciences, 15(9), 16772–16786. (PMID: 252475764200787)
Nikolopoulou, M., & Kalogerakis, N. (2010). Biostimulation strategies for enhanced bioremediation of marine oil spills including chronic pollution. In K. N. Timmis (Ed.), Handbook of hydrocarbon and lipid microbiology (pp. 2521–2529). Berlin: Springer-Verlag.
Santisi, S., Cappello, S., Catalfamo, M., Mancini, G., Hassanshahian, M., Genovese, L., Giuliano, L., & Yakimov, M. M. (2015). Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium. Brazilian Journal of Microbiology, 46(2), 377–387. (PMID: 262732524507529)
Beazley, M. J., Martinez, R. J., Rajan, S., Powell, J., Piceno, Y. M., Tom, L. M., Anderson, G. L., Hazen, T. C., Van Nostrand, J. D., Zhou, J., Mortazavi, B., & Sobecky, P. A. (2012). Micrbial community analysis of a coastal salt march affected by the Deepwater horizon oil spill. PLoS One, 7(11), 1–13.
Dubey, R. C., & Maheshwari, D. K. (2005). A textbook on microbiology. New Delhi: S Chand and Company Ltd..
Ekpenyong, N. S., & Udofia, U. S. (2015). Oil pollution and its impact on water quality in Ibeno community. Studies in Sociology of Science, 6(2), 8–12.
Ogeleka, D. F., Edjere, O., Nwudu, A., & Okieimen, F. E. (2016). Ecological effects of oil spill on pelagic and bottom dwelling organisms in the riverine areas of Odidi and Egwa in Warri, Delta State. Journal of Ecology and the Natural Environment, 8(12), 201–211.
Muigai, P. G., Shiundu, P. M., Mwaura, F. B., & Kamau, G. N. (2010). Correlation between dissolved oxygen and total dissolved solids and their role in the eutrophication of Nairobi dam, Kenya. International Journal of BioChemiPhysics, 18, 38–46.
Takii, S., Hanada, S., Hase, Y., Tamaki, H., Uyeno, Y., Sekiguchi, Y., & Matsuura, K. (2008). Desulfovibrio marinisediminis sp. nov., a novel sulfate-reducing bacterium isolated from coastal marine sediment via enrichment with Casamino acids. International Journal of Systematic and Evolutionary Microbiology, 58(10), 2433–2438. (PMID: 18842870)
Richards, G. P., Watson, M. A., Crane 3rd, E. J., Burt, I. G., & Bushek, D. (2008). Shewanella and Photobacterium spp. in oysters and seawater from the Delaware Bay. Applied Environmental Microbiology, 74(11), 3323–3327. (PMID: 18378645)
Hörmansdorfer, S., Wentges, H., Neugebaur-Büchler, K., & Bauer, J. (2000). Isolation of Vibrio alginolyticus from seawater aquaria. International Journal of Hygiene and Environmental Health, 203(2), 169–175. (PMID: 11109571)
Ben Kahla-Nakbi, A., Besbes, A., Chaieb, K., Rouabhia, M., & Bakhrouf, A. (2007). Survival of Vibrio alginolyticus in seawater and retention of virulence of its starved cells. Marine Environmental Research, 64(4), 469–478. (PMID: 17524473)
Lakhal, R., Pradel, N., Postec, A., Ollivier, B., Cayol, J. L., Godfroy, A., Fardeau, M. L., & Galés, G. (2015). Crassaminicella profunda gen. nov., sp. nov., an anaerobic marine bacterium isolated from deep-sea sediments. International Journal of Systematic and Evolutionary Microbiology, 65(9), 3097–3102. (PMID: 26296351)
Pi, R. X., Zhang, W. W., Fang, M. X., Zhang, Y. Z., Li, T. T., Wu, M., & Zhu, X. F. (2013). Oceanirhabdus sediminicola gen. nov., sp. nov., an anaerobic bacterium isolated from sea sediment. International Journal of Systematic and Evolutionary Microbiology, 63(Pt 11), 4277–4283. (PMID: 23811141)
Qu, L., Lai, Q., Zhu, F., Hong, X., Sun, X., & Shao, Z. (2011). Cohaesibacter marisflavi sp. nov., isolated from sediment of a seawater pond used for sea cucumber culture, and emended description of the genus Cohaesibacter. International Journal of Systematic and Evolutionary Microbiology, 61(Pt 4), 762–766. (PMID: 20418408)
Leclair, D., Farber, J. M., Doidge, B., Blanchfield, B., Suppa, S., Pagotto, F., & Austin, J. W. (2013). Distribution of Clostridium botulinum type E strains in Nunavik, northern Quebec, Canada. Applied Environmental Microbiology, 79(2), 646–654. (PMID: 23160120)
Matthies, C., Evers, S., Ludwig, W., & Schink, B. (2000). Anaerovorax odorimutans gen. Nov., sp. nov., a putrescine-fermenting, strictly anaerobic bacterium. International Journal of Systematic and Evolutionary Microbiology, 50(4), 1591–1594. (PMID: 10939665)
Maity, J. P., Kar, S., Liu, J. H., Jean, J. S., Chen, C. Y., Bundschuh, J., Santra, S. C., & Liu, C. C. (2011). The potential for reductive mobilization of arsenic [As(V) to As(III)] by OSBH2 (Pseudomonas stutzeri) and OSBH5 (Bacillus cereus) in an oil-contaminated site. Journal of Environmental Science and Health, Part A Toxic/Hazardous Substances and Environmental Engineering, 46(11), 1239–1246.
Barrios San Martín, Y. (2011). Bioremediation: A tool for the management of oil pollution in marine ecosystems. Biotecnología Aplicada, 28, 69–76.
Goodwin, K. D., McNay, M., Cao, Y., Ebentier, D., Madison, M., & Griffith, J. F. (2012). A multi-beach study of Staphylococcus aureus, MRSA, and enterococci in seawater and beach sand. Water Research, 46(13), 4195–4207. (PMID: 22652414)
Namwong, S., & Tanasupawat, S. (2014). Identification of Staphylococcus strain CH1-8 and its oil-degradation. Journal of Applied Pharmaceutical Science, 4(11), 024–029.
Leite, G. G., Figueirôa, J. V., Almeida, T. C., Valões, J. L., Marques, W. F., Duarte, M. D., & Gorlach-Lira, K. (2016). Production of rhamnolipids and diesel oil degradation by bacteria isolated from soil contaminated by petroleum. Biotechnology Progress, 32(2), 262–270. (PMID: 26588432)
Lin, X., Yang, B., Shen, J., & Du, N. (2009). Biodegradation of crude oil by an Arctic psychrotrophic bacterium Pseudoalteromomas sp. P29. Current Microbiology, 59(3), 341–345. (PMID: 19543945)
Matsuyama, H., Minami, H., Kasahara, H., Kato, Y., Murayama, M., & Yumoto, I. (2013). Pseudoalteromonas arabiensis sp. nov., a marine polysaccharide-producing bacterium. International Journal of Systematic and Evolutionary Microbiology, 63(Pt 5), 1805–1809. (PMID: 22962336)
Rahman, K. S., Thahira-Rahman, J., Lakshmanaperumalsamy, P., & Banat, I. M. (2002). Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresource Technology, 85(3), 257–261. (PMID: 12365493)
Ben-Dov, E., Ben Yosef, D. Z., Pavlov, V., & Kushmaro, A. (2009). Corynebacterium maris sp. nov., a marine bacterium isolated from the mucus of the coral Fungia granulosa. International Journal of Systematic and Evolutionary Microbiology, 59(Pt 10), 2458–2463. (PMID: 19622641)
Nogi, Y., Yoshizumi, M., & Miyazaki, M. (2014). Thalassospira povalilytica sp. nov., a polyvinyl-alcohol-degrading marine bacterium. International Journal of Systematic and Evolutionary Microbiology, 64(Pt 4), 1149–1153. (PMID: 24408523)
Zhang, J., Xue, Q., Gao, H., Lai, H., & Wang, P. (2016). Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery. Microbial Cell Factories, 15(1), 168. (PMID: 277162845048436)
Hameed, A., Shahina, M., Lin, S. Y., Liu, Y. C., & Young, C. C. (2014). Pseudomonas hussainii sp. nov., isolated from droppings of a seashore bird, and emended descriptions of Pseudomonas pohangensis, Pseudomonas benzenivorans and Pseudomonas segetis. International Journal of Systematic and Evolutionary Microbiology, 64(Pt 7), 2330–2337. (PMID: 24744016)
Park, Y. D., Yi, H., Baik, K. S., Seong, C. N., Bae, K. S., Moon, E. Y., & Chun, J. (2006). Pseudomonas segetis sp. nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 56(11), 2593–2595. (PMID: 17082397)
Whitehead, A. (2013). Interactions between oil-spill pollutants and natural stressors can compound ecotoxicological effects. Integrative and Comparative Biology, 53(4), 635–647. (PMID: 238426113895973)
Head, I. M., Jones, D. M., & Röling, W. F. (2006). Marine microorganisms make a meal of oil. Nature Reviews. Microbiology, 4(3), 173–182. (PMID: 16489346)
McGenity, T. J., Folwell, B. D., McKew, B. A., & Sanni, G. O. (2012). Marine crude-oil biodegradation: A central role for interspecies interactions. Aquatic Biosystem, 8(1), 10 1-19.
Campeão, M. E., Reis, L., Leomil, L., de Oliveira, L., Otsuki, K., Gardinali, P., Pelz, O., Valle, R., Thompson, F. L., & Thompson, C. C. (2017). The deep-sea microbial community from the amazonian basin associated with oil degradation. Frontiers in Microbiology, 8(1019), 1–13. - Grant Information: MOST 108-2811-M-194-510; MOST 107-2811-M-194-006; MOST 106-2811-M-194-006 Ministry of Science and Technology, Taiwan
- Contributed Indexing: Keywords: Indigenous bacteria; Marine oil spill; Microbial diversity; Oil degradation; Oil removal from water; UCM weathering
- Accession Number: 0 (Hydrocarbons)
- Publication Date: Date Created: 20200524 Date Completed: 20210806 Latest Revision: 20210806
- Publication Date: 20221213
- Accession Number: 10.1007/s12010-020-03335-5
- Accession Number: 32445124
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.