Contrasting migratory journeys and changes in hippocampal astrocyte morphology in shorebirds.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-Blackwell Country of Publication: France NLM ID: 8918110 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1460-9568 (Electronic) Linking ISSN: 0953816X NLM ISO Abbreviation: Eur J Neurosci Subsets: MEDLINE
    • Publication Information:
      Publication: : Oxford : Wiley-Blackwell
      Original Publication: Oxford, UK : Published on behalf of the European Neuroscience Association by Oxford University Press, c1989-
    • Subject Terms:
    • Abstract:
      Semipalmated sandpiper (Calidris pusilla) migration to the Southern Hemisphere includes a 5-day non-stop flight over the Atlantic Ocean, whereas semipalmated plover (Charadrius semipalmatus) migration, to the same area, is largely over land, with stopovers for feeding and rest. We compared the number and 3D morphology of hippocampal astrocytes of Ch. semipalmatus before and after autumnal migration with those of C. pusilla to test the hypothesis that the contrasting migratory flights of these species could differentially shape hippocampal astrocyte number and morphology. We captured individuals from both species in the Bay of Fundy (Canada) and in the coastal region of Bragança (Brazil) and processed their brains for selective GFAP immunolabeling of astrocytes. Hierarchical cluster analysis of astrocyte morphological features distinguished two families of morphological phenotypes, named type I and type II, which were differentially affected after migratory flights. Stereological counts of hippocampal astrocytes demonstrated that the number of astrocytes decreased significantly in C. pusilla, but did not change in Ch. semipalmatus. In addition, C. pusilla and Ch. semipalmatus hippocampal astrocyte morphological features were differentially affected after autumnal migration. We evaluated whether astrocyte morphometric variables were influenced by phylogenetic differences between C. pusilla and Ch. semipalmatus, using phylogenetically independent contrast approach, and phylogenetic trees generated by nuclear and mitochondrial markers. Our findings suggest that phylogenetic differences do not explain the results and that contrasting long-distance migratory flights shape plasticity of type I and type II astrocytes in different ways, which may imply distinct physiological roles for these cells.
      (© 2020 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.)
    • References:
      Achanta, L. B., Rowlands, B. D., Thomas, D. S., Housley, G. D., & Rae, C. D. j. n. r.(2017). β-Hydroxybutyrate boosts mitochondrial and neuronal metabolism but is not preferred over glucose under activated conditions. Neurochemical Research, 42, 1710-1723. https://doi.org/10.1007/s11064-017-2228-6.
      Acion, L., Peterson, J. J., Temple, S., & Arndt, S. J. S. I. M.(2006). Probabilistic index: An intuitive non-parametric approach to measuring the size of treatment effects. Statistics in Medicine, 25, 591-602. https://doi.org/10.1002/sim.2256.
      Adamsky, A., & Goshen, I. (2018). Astrocytes in memory function: Pioneering findings and future directions. Neuroscience, 370, 14-26. https://doi.org/10.1016/j.neuroscience.2017.05.033.
      Allen, N. J. (2014). Astrocyte regulation of synaptic behavior. Annual Review of Cell and Developmental Biology, 30, 439-463. https://doi.org/10.1146/annurev-cellbio-100913-013053.
      Aoki, S. J. H. (2020). Effect sizes of the differences between means without assuming variance equality and between a mean and a constant. Heliyon, 6, e03306. https://doi.org/10.1016/j.heliyon.2020.e03306.
      Astie, A. A., Scardamaglia, R. C., Muzio, R. N., & Reboreda, J. C. (2015). Sex differences in retention after a visual or a spatial discrimination learning task in brood parasitic shiny cowbirds. Behavioural Processes, 119, 99-104. https://doi.org/10.1016/j.beproc.2015.07.016.
      Atoji, Y., & Wild, J. M. (2006). Anatomy of the avian hippocampal formation. Reviews in the Neurosciences, 17, 3-15. https://doi.org/10.1515/REVNEURO.2006.17.1-2.3.
      Baker, A. J., Pereira, S. L., & Paton, T. A. J. B. L. (2007). Phylogenetic relationships and divergence times of Charadriiformes genera: Multigene evidence for the Cretaceous origin of at least 14 clades of shorebirds. Biology Letters, 3, 205-210. https://doi.org/10.1098/rsbl.2006.0606.
      Barkan, S., Roll, U., Yom-Tov, Y., Wassenaar, L. I., & Barnea, A. (2016). Possible linkage between neuronal recruitment and flight distance in migratory birds. Scientific Reports, 6, 21983. https://doi.org/10.1038/srep21983.
      Barkan, S., Yom-Tov, Y., & Barnea, A. (2017). Exploring the relationship between brain plasticity, migratory lifestyle, and social structure in birds. Frontiers in Neuroscience, 11, 139. https://doi.org/10.3389/fnins.2017.00139.
      Barth, J. M., Matschiner, M., & Robertson, B. C. (2013). Phylogenetic position and subspecies divergence of the endangered New Zealand Dotterel (Charadrius obscurus). PLoS One, 8, e78068. https://doi.org/10.1371/journal.pone.0078068.
      Bingman, V. P., & Able, K. P. (2002). Maps in birds: Representational mechanisms and neural bases. Current Opinion in Neurobiology, 12, 745-750. https://doi.org/10.1016/S0959-4388(02)00375-6.
      Bingman, V. P., & Cheng, K. (2005). Mechanisms of animal global navigation: Comparative perspectives and enduring challenges. Ethology Ecology & Evolution, 17, 295-318. https://doi.org/10.1080/08927014.2005.9522584.
      Bingman, V. P., & MacDougall-Shackleton, S. A. (2017). The avian hippocampus and the hypothetical maps used by navigating migratory birds (with some reflection on compasses and migratory restlessness). Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 203, 465-474. https://doi.org/10.1007/s00359-017-1161-0.
      Biro, D., Meade, J., & Guilford, T. (2004). Familiar route loyalty implies visual pilotage in the homing pigeon. Proceedings of the National Academy of Sciences of the United States of America, 101, 17440-17443. https://doi.org/10.1073/pnas.0406984101.
      Brown, S. (2014). The Remarkable Odyssey of a Semipalmated Sandpiper Shorebird Science. Manomet Soaring Solutions Grounded Science, Canada.
      Campos, C., Naiff, R., & Araujo, A. (2008). Censo de aves migratórias (Charadriidae e Scolopacidae) da Porção Norte da Bacia Amazônica, Macapá, Amapá, Brasil. Ornitologia, 3, 38-46.
      Carlo, C. N., & Stevens, C. F. (2011). Analysis of differential shrinkage in frozen brain sections and its implications for the use of guard zones in stereology. The Journal of Comparative Neurology, 519, 2803-2810. https://doi.org/10.1002/cne.22652.
      Carvalho-Paulo, D., de Morais Magalhaes, N. G., de Almeida Miranda, D., Diniz, D. G., Henrique, E. P., Moraes, I. A. M., … Diniz, C. W. P. (2018). Hippocampal astrocytes in migrating and wintering semipalmated sandpiper Calidris pusilla. Frontiers in Neuroanatomy, 11, 126. https://doi.org/10.3389/fnana.2017.00126.
      Cristol, D. A., Reynolds, E. B., Leclerc, J. E., Donner, A. H., Farabaugh, C. S., & Ziegenfus, C. W. (2003). Migratory dark-eyed juncos, Junco hyemalis, have better spatial memory and denser hippocampal neurons than nonmigratory conspecifics. Animal Behaviour, 66, 317-328. https://doi.org/10.1006/anbe.2003.2194.
      de Morais Magalhaes, N. G., Guerreiro Diniz, C., Guerreiro Diniz, D., Pereira Henrique, E., Correa Pereira, P. D., Matos Moraes, I. A., … Wanderley Picanço, D. C.,(2017). Hippocampal neurogenesis and volume in migrating and wintering semipalmated sandpipers (Calidris pusilla). PLoS One, 12, e0179134. https://doi.org/10.1371/journal.pone.0179134.
      de Sousa, A. A., Dos Reis, R. R., de Lima, C. M., de Oliveira, M. A., Fernandes, T. N., Gomes, G. F., … Diniz, C. W. (2015). Three-dimensional morphometric analysis of microglial changes in a mouse model of virus encephalitis: Age and environmental influences. European Journal of Neuroscience, 42, 2036-2050. https://doi.org/10.1111/ejn.12951.
      Ding, Y., Chang, C., Xie, L., Chen, Z., & Ai, H. (2014). Intense exercise can cause excessive apoptosis and synapse plasticity damage in rat hippocampus through Ca(2)(+) overload and endoplasmic reticulum stress-induced apoptosis pathway. Chinese Medical Journal, 127, 3265-3271. https://doi.org/10.1097/00029330-201409200-00014.
      Diniz, C. G., Magalhaes, N. G., Sousa, A. A., Santos Filho, C., Diniz, D. G., Lima, C. M., … Picanco-Diniz, C. W. (2016). Microglia and neurons in the hippocampus of migratory sandpipers. Brazilian Journal of Medical and Biological Research, 49, e5005. https://doi.org/10.1590/1414-431x20155005.
      Diniz, D. G., de Oliveira, M. A., de Lima, C. M., Foro, C. A., Sosthenes, M. C., Bento-Torres, J., … Diniz, C. W. (2016). Age, environment, object recognition and morphological diversity of GFAP-immunolabeled astrocytes. Behavioral and Brain Functions, 12, 28. https://doi.org/10.1186/s12993-016-0111-2.
      Diniz, D., Foro, C., Bento-Torres, J., Vasconcelos, P., & Cristovam Wanderley, P.-D. (2012) Aging, environmental enrichment, object recognition and astrocyte plasticity in dentate gyrus. In O. Gonzalez-Perez (Ed.) Astrocytes: Structure, functions and role in disease. New York, NY: Nova Science Publisher Inc. pp. in press.
      Diniz, D. G., Foro, C. A., Rego, C. M., Gloria, D. A., de Oliveira, F. R., Paes, J. M., … Diniz, C. W. (2010). Environmental impoverishment and aging alter object recognition, spatial learning, and dentate gyrus astrocytes. European Journal of Neuroscience, 32, 509-519. https://doi.org/10.1111/j.1460-9568.2010.07296.x.
      Drummond, A. J., Xie, W., & Heled, J. J. M. B. (2012). Bayesian inference of species trees from multilocus data using* BEAST. Evolution, 29, 1969-1973.
      Felsenstein, J. (1985). Phylogenies and the comparative method. The American Naturalist, 125, 1-15. https://doi.org/10.1086/284325.
      Frost, B. J., & Mouritsen, H. (2006). The neural mechanisms of long distance animal navigation. Current Opinion in Neurobiology, 16, 481-488. https://doi.org/10.1016/j.conb.2006.06.005.
      Fusani, L., Bertolucci, C., Frigato, E., & Foa, A. J. J. o. E. B.,(2014). Cryptochrome expression in the eye of migratory birds depends on their migratory status. Journal of Experimental Biology, 217, 918-923. https://doi.org/10.1242/jeb.096479.
      Garland, T. Jr, Harvey, P. H., & Ives, A. R. (1992). Procedures for the analysis of comparative data using phylogenetically independent contrasts. Systematic Biology, 41, 18-32. https://doi.org/10.1093/sysbio/41.1.18.
      Gibson, R., & Baker, A. (2012). Multiple gene sequences resolve phylogenetic relationships in the shorebird suborder Scolopaci (Aves: Charadriiformes). Molecular Phylogenetics and Evolution, 64, 66-72. https://doi.org/10.1016/j.ympev.2012.03.008.
      Glaser, E. M., & Wilson, P. D. (1998). The coefficient of error of optical fractionator population size estimates: A computer simulation comparing three estimators. Journal of Microscopy, 192, 163-171. https://doi.org/10.1046/j.1365-2818.1998.00417.x.
      Glaser, J. R., & Glaser, E. M. (2000). Stereology, morphometry, and mapping: The whole is greater than the sum of its parts. Journal of Chemical Neuroanatomy, 20, 115-126. https://doi.org/10.1016/S0891-0618(00)00073-9.
      Gordon, G. R., Choi, H. B., Rungta, R. L., Ellis-Davies, G. C., & MacVicar, B. A. (2008). Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature, 456, 745-749. https://doi.org/10.1038/nature07525.
      Guigueno, M. F., MacDougall-Shackleton, S. A., & Sherry, D. F. (2016). Sex and seasonal differences in hippocampal volume and neurogenesis in brood-parasitic brown-headed cowbirds (Molothrus ater). Developmental Neurobiology, 76, 1275-1290.
      Gundersen, H., & Jensen, E. (1987). The efficiency of systematic sampling in stereology and its prediction. Journal of Microscopy, 147, 229-263. https://doi.org/10.1111/j.1365-2818.1987.tb02837.x.
      Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Vol. 41, Nucleic acids symposium series. [London]: Information Retrieval Ltd., c1979-c2000., City. p. 95-98.
      Healy, S. D., & Krebs, J. R. (1996). Food storing and the hippocampus in Paridae. Brain, Behavior and Evolution, 47, 195-199. https://doi.org/10.1159/000113239.
      Heled, J. (2010). Extended Bayesian skyline plot tutorial. Retrieved from http://evomicsorg.wpengine.netdna-cdn.com/wp-content/uploads/2015/11/ebsp2-tut1.pdf.
      Herculano-Houzel, S. (2014). The glia/neuron ratio: How it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia, 62, 1377-1391. https://doi.org/10.1002/glia.22683.
      Herold, C., Coppola, V. J., & Bingman, V. P. (2015). The maturation of research into the avian hippocampal formation: Recent discoveries from one of the nature's foremost navigators. Hippocampus, 25, 1193-1211. https://doi.org/10.1002/hipo.22463.
      Hosseini-Sharifabad, M., & Nyengaard, J. R. (2007). Design-based estimation of neuronal number and individual neuronal volume in the rat hippocampus. Journal of Neuroscience Methods, 162, 206-214. https://doi.org/10.1016/j.jneumeth.2007.01.009.
      Iadecola, C. (2017). The Neurovascular unit coming of age: A journey through neurovascular coupling in health and disease. Neuron, 96, 17-42. https://doi.org/10.1016/j.neuron.2017.07.030.
      Kahn, M. C., & Bingman, V. P. (2009). Avian hippocampal role in space and content memory. European Journal of Neuroscience, 30, 1900-1908. https://doi.org/10.1111/j.1460-9568.2009.06979.x.
      Khakh, B. S., & Sofroniew, M. V. (2015). Diversity of astrocyte functions and phenotypes in neural circuits. Nature Neuroscience, 18, 942-952. https://doi.org/10.1038/nn.4043.
      Kolb, H., Fernandez, E., Schouten, J., Ahnelt, P., Linberg, K. A., & Fisher, S. K. (1994). Are there three types of horizontal cell in the human retina? The Journal of Comparative Neurology, 343, 370-386. https://doi.org/10.1002/cne.903430304.
      Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., & Calcott, B. J. M. b.(2016). PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34, 772-773. https://doi.org/10.1093/molbev/msw260.
      Lau, J. C., Rodgers, C. T., & Hore, P. J. J. o. T. R. S. I.(2012). Compass magnetoreception in birds arising from photo-induced radical pairs in rotationally disordered cryptochromes. Journal of the Royal Society Interface, 9, 3329-3337. https://doi.org/10.1098/rsif.2012.0374.
      Liebner, S., Dijkhuizen, R. M., Reiss, Y., Plate, K. H., Agalliu, D., & Constantin, G. (2018). Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathologica, 135, 311-336. https://doi.org/10.1007/s00401-018-1815-1.
      Lima, C. M. d., Pereira, P. D. C., Henrique, E. P.Oliveira, M. A. d., Paulo, D. C., Siqueira, L. S. D., … Diniz, C. G. J. F. i. n. (2019) Differential change in hippocampal radial astrocytes and neurogenesis in shorebirds with contrasting migratory routes. Frontiers in Neuroanatomy, 13, 82. https://doi.org/10.3389/fnana.2019.00082.
      Liu, B., Teschemacher, A. G., & Kasparov, S. (2017). Neuroprotective potential of astroglia. Journal of Neuroscience Research, 95, 2126-2139.
      Louchart, A. (2008). Emergence of long distance bird migrations: A new model integrating global climate changes. Naturwissenschaften, 95, 1109-1119. https://doi.org/10.1007/s00114-008-0435-3.
      Maddison, W. P., & Maddison, D. R. (2011) Mesquite: A modular system for evolutionary analysis, Version 3.61. Retrieved from http://www.mesquiteproject.org/.
      Magistretti, P. J., & Allaman, I. (2018). Lactate in the brain: From metabolic end-product to signalling molecule. Nature Reviews Neuroscience, 19, 235-249. https://doi.org/10.1038/nrn.2018.19.
      Mouritsen, H., Heyers, D., & Gunturkun, O. (2016). The neural basis of long-distance navigation in birds. Annual Review of Physiology, 78, 133-154. https://doi.org/10.1146/annurev-physiol-021115-105054.
      Oberheim, N. A., Wang, X., Goldman, S., & Nedergaard, M. (2006). Astrocytic complexity distinguishes the human brain. Trends in Neurosciences, 29, 547-553. https://doi.org/10.1016/j.tins.2006.08.004.
      Pravosudov, V. V., Kitaysky, A. S., & Omanska, A. (2006) The relationship between migratory behaviour, memory and the hippocampus: An intraspecific comparison. Proceedings of the Royal Society of London B: Biological Sciences, 273, 2641-2649.
      Rensel, M. A., Ellis, J. M., Harvey, B., & Schlinger, B. A. (2015). Sex, estradiol, and spatial memory in a food-caching corvid. Hormones and Behavior, 75, 45-54. https://doi.org/10.1016/j.yhbeh.2015.07.022.
      Rodriguez, J. J., Yeh, C. Y., Terzieva, S., Olabarria, M., Kulijewicz-Nawrot, M., & Verkhratsky, A. (2014). Complex and region-specific changes in astroglial markers in the aging brain. Neurobiology of Aging, 35, 15-23. https://doi.org/10.1016/j.neurobiolaging.2013.07.002.
      Rose, C. R., Felix, L., Zeug, A., Dietrich, D., Reiner, A., & Henneberger, C. (2017). Astroglial glutamate signaling and uptake in the hippocampus. Frontiers in Molecular Neuroscience, 10, 451. https://doi.org/10.3389/fnmol.2017.00451.
      Salois, G., & Smith, J. S. (2016). Housing complexity alters GFAP-immunoreactive astrocyte morphology in the rat dentate gyrus. Neural Plasticity, 2016, 3928726. https://doi.org/10.1155/2016/3928726.
      Sampedro-Piquero, P., De Bartolo, P., Petrosini, L., Zancada-Menendez, C., Arias, J. L., & Begega, A. (2014). Astrocytic plasticity as a possible mediator of the cognitive improvements after environmental enrichment in aged rats. Neurobiology of Learning and Memory, 114, 16-25. https://doi.org/10.1016/j.nlm.2014.04.002.
      Saper, C. B., & Sawchenko, P. E. (2003). Magic peptides, magic antibodies: Guidelines for appropriate controls for immunohistochemistry. The Journal of Comparative Neurology, 465, 161-163. https://doi.org/10.1002/cne.10858.
      Schweitzer, L., & Renehan, W. E. (1997). The use of cluster analysis for cell typing. Brain Research Protocols, 1, 100-108. https://doi.org/10.1016/S1385-299X(96)00014-1.
      Sherry, D. F., & Vaccarino, A. L. (1989). Hippocampus and memory for food caches in black-capped chickadees. Behavioral Neuroscience, 103(2), 308-318. https://doi.org/10.1037/0735-7044.103.2.308.
      Shu, S. Y., Ju, G., & Fan, L. Z. (1988). The glucose oxidase-DAB-nickel method in peroxidase histochemistry of the nervous system. Neuroscience Letters, 85, 169-171. https://doi.org/10.1016/0304-3940(88)90346-1.
      Sick, H. (1997). Ornitologia Brasileira. Brasil: Nova Fronteira.
      Slomianka, L., & West, M. J. (2005). Estimators of the precision of stereological estimates: An example based on the CA1 pyramidal cell layer of rats. Neuroscience, 136, 757-767. https://doi.org/10.1016/j.neuroscience.2005.06.086.
      Soffie, M., Hahn, K., Terao, E., & Eclancher, F. (1999). Behavioural and glial changes in old rats following environmental enrichment. Behavioral Brain Research, 101, 37-49. https://doi.org/10.1016/S0166-4328(98)00139-9.
      Sorenson, M. D., Ast, J. C., Dimcheff, D. E., Yuri, T., & Mindell, D. P. (1999). Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Molecular Phylogenetics and Evolution, 12, 105-114. https://doi.org/10.1006/mpev.1998.0602.
      Thompson, J. D., Higgins, D. G., & Gibson, T. J. J. N. A. R.(1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680. https://doi.org/10.1093/nar/22.22.4673.
      Thorup, K., & Holland, R. A. (2009). The bird GPS - long-range navigation in migrants. Journal of Experimental Biology, 212, 3597-3604. https://doi.org/10.1242/jeb.021238.
      Tsai, S. F., Chen, P. C., Calkins, M. J., Wu, S. Y., & Kuo, Y. M. (2016). Exercise counteracts aging-related memory impairment: A potential role for the astrocytic metabolic shuttle. Frontiers in Aging Neuroscience, 8, 57. https://doi.org/10.3389/fnagi.2016.00057.
      Vaidya, G., Lohman, D. J., & Meier, R. J. C. (2011). SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics, 27(2), 171-180. https://doi.org/10.1111/j.1096-0031.2010.00329.x.
      Verkhratsky, A., Matteoli, M., Parpura, V., Mothet, J. P., & Zorec, R. (2016). Astrocytes as secretory cells of the central nervous system: Idiosyncrasies of vesicular secretion. EMBO Journal, 35, 239-257. https://doi.org/10.15252/embj.201592705.
      Viola, G. G., Rodrigues, L., Americo, J. C., Hansel, G., Vargas, R. S., Biasibetti, R., … Amaral, O. B. (2009). Morphological changes in hippocampal astrocytes induced by environmental enrichment in mice. Brain Research, 1274, 47-54. https://doi.org/10.1016/j.brainres.2009.04.007.
      West, M. J. (2002). Design-based stereological methods for counting neurons. Progress in Brain Research, 135, 43-51.
      Wiltschko, R., Dehe, L., Gehring, D., Thalau, P., & Wiltschko, W. (2013). Interactions between the visual and the magnetoreception system: Different effects of bichromatic light regimes on the directional behavior of migratory birds. Journal of Physiology - Paris, 107, 137-146. https://doi.org/10.1016/j.jphysparis.2012.03.003.
      Yamada, J., & Jinno, S. (2013). Novel objective classification of reactive microglia following hypoglossal axotomy using hierarchical cluster analysis. The Journal of Comparative Neurology, 521, 1184-1201. https://doi.org/10.1002/cne.23228.
      Yeh, C. W., Yeh, S. H., Shie, F. S., Lai, W. S., Liu, H. K., Tzeng, T. T., … Shiao, Y. J. (2015). Impaired cognition and cerebral glucose regulation are associated with astrocyte activation in the parenchyma of metabolically stressed APPswe/PS1dE9 mice. Neurobiology of Aging, 36, 2984-2994. https://doi.org/10.1016/j.neurobiolaging.2015.07.022.
    • Contributed Indexing:
      Keywords: Calidris pusilla; Charadrius semipalmatus; Nearctic birds; astrocyte morphology; hippocampus; migration; non-stop flight; semipalmated plover; semipalmated sandpiper; shorebird; transatlantic flight
    • Publication Date:
      Date Created: 20200515 Date Completed: 20210917 Latest Revision: 20210917
    • Publication Date:
      20231215
    • Accession Number:
      10.1111/ejn.14781
    • Accession Number:
      32406131