CCR9 and CCL25: A review of their roles in tumor promotion.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-Liss Country of Publication: United States NLM ID: 0050222 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-4652 (Electronic) Linking ISSN: 00219541 NLM ISO Abbreviation: J Cell Physiol Subsets: MEDLINE
    • Publication Information:
      Publication: New York, NY : Wiley-Liss
      Original Publication: Philadelphia, Wistar Institute of Anatomy and Biology.
    • Subject Terms:
    • Abstract:
      Chemokines constitute a superfamily of small chemotactic cytokines with functions that are based on interactions with their corresponding receptors. It has been found that, among other functions, chemokines regulate the migratory and invasive abilities of cancer cells. Multiple studies have confirmed that chemokine receptor 9 (CCR9) and its exclusive ligand, chemokine 25 (CCL25), are overexpressed in a variety of malignant tumors and are closely associated with tumor proliferation, apoptosis, invasion, migration and drug resistance. This review evaluates recent advances in understanding the role of CCR9/CCL25 in cancer development. First, we outline the general background of chemokines in cancer and the structure and function of CCR9 and CCL25. Next, we describe the basic function of CCR9/CCL25 in the cancer process. Then, we introduce the role of CCR9/CCL25 and related signaling pathways in various cancers. Finally, future research directions are proposed. In general, this paper is intended to serve as a comprehensive repository of information on this topic and is expected to contribute to the design of other research projects and future efforts to develop treatment strategies for ameliorating the effects of CCR9/CCL25 in cancer.
      (© 2020 Wiley Periodicals LLC.)
    • References:
      Alexopoulou, A. N., & Lees, D. M. (2017). Focal adhesion kinase (FAK) tyrosine 397E mutation restores the vascular leakage defect in endothelium-specific FAK-kinase dead mice. The Journal of Pathology, 242, 358-370.
      Amersi, F. F., Terando, A. M., Goto, Y., Scolyer, R. A., Thompson, J. F., Tran, A. N., … Hoon, D. S. (2008). Activation of CCR9/CCL25 in cutaneous melanoma mediates preferential metastasis to the small intestine. Clinical Cancer Research, 14, 638-645.
      Bar-Sagi, D., & Hall, A. (2000). Ras and Rho GTPases: A family reunion. Cell, 103, 227-238.
      Berx, G., & van Roy, F. (2009). Involvement of members of the cadherin superfamily in cancer. Cold Spring Harbor Perspectives in Biology, 1, a003129.
      Borst, J., Ahrends, T., Babala, N., Melief, C. J. M., & Kastenmuller, W. (2018). CD4(+) T cell help in cancer immunology and immunotherapy. Nature Reviews Immunology, 18, 635-647.
      Boyes, A. W., Clinton-McHarg, T., Waller, A. E., Steele, A., D'Este, C. A., & Sanson-Fisher, R. W. (2015). Prevalence and correlates of the unmet supportive care needs of individuals diagnosed with a haematological malignancy. Acta Oncologica, 54, 507-514.
      Brightman, S. E., Naradikian, M. S., Miller, A. M., & Schoenberger, S. P. (2020). Harnessing neoantigen specific CD4 T cells for cancer immunotherapy. Journal of Leukocyte Biology, 107, 625-633.
      Cavallaro, U., & Christofori, G. (2004). Multitasking in tumor progression: Signaling functions of cell adhesion molecules. Annals of the New York Academy of Sciences, 1014, 58-66.
      Chakraborty, K., Bose, A., Chakraborty, T., Sarkar, K., Goswami, S., Pal, S., & Baral, R. (2010). Restoration of dysregulated CC chemokine signaling for monocyte/macrophage chemotaxis in head and neck squamous cell carcinoma patients by neem leaf glycoprotein maximizes tumor cell cytotoxicity. Cellular & Molecular Immunology, 7, 396-408.
      Chen, H., Cong, X., Wu, C., Wu, X., Wang, J., Mao, K., & Li, J. (2020). Intratumoral delivery of CCL25 enhances immunotherapy against triple-negative breast cancer by recruiting CCR9(+) T cells. Science Advances, 6, eaax4690.
      Chen, H. J., Edwards, R., Tucci, S., Bu, P., Milsom, J., Lee, S., … Lipkin, S. (2012). Chemokine 25-induced signaling suppresses colon cancer invasion and metastasis. The Journal of Clinical Investigation, 122, 3184-3196.
      Chen, S., Wang, J., Gou, W. F., Xiu, Y. L., Zheng, H. C., Zong, Z. H., … Zhao, Y. (2013). The involvement of RhoA and Wnt-5a in the tumorigenesis and progression of ovarian epithelial carcinoma. International Journal of Molecular Sciences, 14, 24187-24199.
      Clark-Lewis, I., Kim, K. S., Rajarathnam, K., Gong, J. H., Dewald, B., Moser, B., … Sykes, B. D. (1995). Structure-activity relationships of chemokines. Journal of Leukocyte Biology, 57, 703-711.
      Crawford, E. D. (2009). Understanding the epidemiology, natural history, and key pathways involved in prostate cancer. Urology, 73, S4-S10.
      Cui, W. J., Liu, Y., Zhou, X. L., Wang, F. Z., Zhang, X. D., & Ye, L. H. (2010). Myosin light chain kinase is responsible for high proliferative ability of breast cancer cells via anti-apoptosis involving p38 pathway. Acta Pharmacologica Sinica, 31, 725-732.
      Datta, S. R., Brunet, A., & Greenberg, M. E. (1999). Cellular survival: A play in three Akts. Genes & Development, 13, 2905-2927.
      Datta, S. R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y., & Greenberg, M. E. (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell, 91, 231-241.
      Deng, X., Tu, Z., Xiong, M., Tembo, K., Zhou, L., Liu, P., … Zhang, Q. (2017). Wnt5a and CCL25 promote adult T-cell acute lymphoblastic leukemia cell migration, invasion and metastasis. Oncotarget, 8, 39033-39047.
      Frangogiannis, N. G. (2004). Chemokines in the ischemic myocardium: From inflammation to fibrosis. Inflammation Research, 53, 585-595.
      Fujiwara, H., & Hamaoka, T. (2001). Coordination of chemokine and adhesion systems in intratumoral T cell migration responsible for the induction of tumor regression. International Immunopharmacology, 1, 613-623.
      Fusi, A., Liu, Z., Kummerlen, V., Nonnemacher, A., Jeske, J., & Keilholz, U. (2012). Expression of chemokine receptors on circulating tumor cells in patients with solid tumors. Journal of Translational Medicine, 10, 52.
      Gangopadhyay, S., Nandy, A., Hor, P., & Mukhopadhyay, A. (2013). Breast cancer stem cells: A novel therapeutic target. Clinical Breast Cancer, 13, 7-15.
      Ghajar, C. M., & Bissell, M. J. (2016). Metastasis: Pathways of parallel progression. Nature, 540, 528-529.
      Gonzalez, V. M., Fuertes, M. A., Alonso, C., & Perez, J. M. (2001). Is cisplatin-induced cell death always produced by apoptosis?Molecular Pharmacology, 59, 657-663.
      Gonzalez-Arriagada, W. A., Lozano-Burgos, C., Zuniga-Moreta, R., Gonzalez-Diaz, P., & Coletta, R. D. (2018). Clinicopathological significance of chemokine receptor (CCR1, CCR3, CCR4, CCR5, CCR7 and CXCR4) expression in head and neck squamous cell carcinomas. Journal of Oral Pathology & Medicine, 47, 755-763.
      Habas, R., Dawid, I. B., & He, X. (2003). Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation. Genes & Development, 17, 295-309.
      Hakuma, N., Kinoshita, I., Shimizu, Y., Yamazaki, K., Yoshida, K., Nishimura, M., & Dosaka-Akita, H. (2005). E1AF/PEA3 activates the Rho/Rho-associated kinase pathway to increase the malignancy potential of non-small-cell lung cancer cells. Cancer Research, 65, 10776-10782.
      Heidenreich, A., Aus, G., Bolla, M., Joniau, S., Matveev, V. B., Schmid, H. P., & Zattoni, F. (2008). EAU guidelines on prostate cancer. European Urology, 53, 68-80.
      Heinrich, E. L., Arrington, A. K., Ko, M. E., Luu, C., Lee, W., Lu, J., & Kim, J. (2013). Paracrine activation of chemokine receptor CCR9 enhances the invasiveness of pancreatic cancer cells. Cancer Microenvironment, 6, 241-245.
      Helmink, B. A., Khan, M. A. W., Hermann, A., Gopalakrishnan, V., & Wargo, J. A. (2019). The microbiome, cancer, and cancer therapy. Nature Medicine, 25, 377-388.
      Igaki, K., Komoike, Y., Nakamura, Y., Watanabe, T., Yamasaki, M., Fleming, P., … Tsuchimori, N. (2018). MLN3126, an antagonist of the chemokine receptor CCR9, ameliorates inflammation in a T cell mediated mouse colitis model. International Immunopharmacology, 60, 160-169.
      Jacquelot, N., Enot, D. P., Flament, C., Vimond, N., Blattner, C., Pitt, J. M., … Zitvogel, L. (2016). Chemokine receptor patterns in lymphocytes mirror metastatic spreading in melanoma. The Journal of Clinical Investigation, 126, 921-937.
      Jiang, E., Shangguan, A. J., Chen, S., Tang, L., Zhao, S., & Yu, Z. (2016). The progress and prospects of routine prophylactic antiviral treatment in hepatitis B-related hepatocellular carcinoma. Cancer Letters, 379, 262-267.
      Jiang, H., Liu, X., Knolhoff, B. L., Hegde, S., Lee, K. B., Jiang, H., … DeNardo, D. G. (2020). Development of resistance to FAK inhibition in pancreatic cancer is linked to stromal depletion. Gut, 69(1), 122-132.
      Jiang, S., Li, T., Yang, Z., Hu, W., & Yang, Y. (2018). Deciphering the roles of FOXO1 in human neoplasms. International Journal of Cancer, 143(7), 1560-1568.
      Jing, Y., Lv, H. Y., & Feng, S. W. (2016). The trend of chemotherapy-induced peripheral neurotoxicity in ovarian cancer survivors and its impacts on daily life during and one year after treatment. European Journal of Gynaecological Oncology, 37, 696-699.
      Jo, H., Zhang, R., Zhang, H., McKinsey, T. A., Shao, J., Beauchamp, R. D., … Liang, P. (2000). NF-kappa B is required for H-ras oncogene induced abnormal cell proliferation and tumorigenesis. Oncogene, 19, 841-849.
      Johnson, E. L., Singh, R., Johnson-Holiday, C. M., Grizzle, W. E., Partridge, E. E., Lillard, J. W., Jr., & Singh, S. (2010). CCR9 interactions support ovarian cancer cell survival and resistance to cisplatin-induced apoptosis in a PI3K-dependent and FAK-independent fashion. Journal of Ovarian Research, 3, 15.
      Johnson, E. L., Singh, R., Singh, S., Johnson-Holiday, C. M., Grizzle, W. E., Partridge, E. E., & Lillard, J. W., Jr. (2010). CCL25-CCR9 interaction modulates ovarian cancer cell migration, metalloproteinase expression, and invasion. World Journal of Surgical Oncology, 8, 62.
      Johnson-Holiday, C., Singh, R., Johnson, E., Singh, S., Stockard, C. R., Grizzle, W. E., & Lillard, J. W., Jr. (2011). CCL25 mediates migration, invasion and matrix metalloproteinase expression by breast cancer cells in a CCR9-dependent fashion. International Journal of Oncology, 38, 1279-1285.
      Johnson-Holiday, C., Singh, R., Johnson, E. L., Grizzle, W. E., Lillard, J. W., Jr., & Singh, S. (2011). CCR9-CCL25 interactions promote cisplatin resistance in breast cancer cell through Akt activation in a PI3K-dependent and FAK-independent fashion. World Journal of Surgical Oncology, 9, 46.
      Khandelwal, N., Breinig, M., Speck, T., Michels, T., Kreutzer, C., Sorrentino, A., … Beckhove, P. (2015). A high-throughput RNAi screen for detection of immune-checkpoint molecules that mediate tumor resistance to cytotoxic T lymphocytes. EMBO Molecular Medicine, 7, 450-463.
      Kikuchi, A., Yamamoto, H., Sato, A., & Matsumoto, S. (2012). Wnt5a: Its signalling, functions and implication in diseases. Acta Physiologica, 204, 17-33.
      Lanca, T., Costa, M. F., Goncalves-Sousa, N., Rei, M., Grosso, A. R., Penido, C., & Silva-Santos, B. (2013). Protective role of the inflammatory CCR2/CCL2 chemokine pathway through recruitment of type 1 cytotoxic gammadelta T lymphocytes to tumor beds. Journal of Immunology, 190, 6673-6680.
      Legler, D. F., & Thelen, M. (2016). Chemokines: Chemistry, biochemistry and biological function. Chimia, 70, 856-859.
      Letsch, A., Keilholz, U., Schadendorf, D., Assfalg, G., Asemissen, A. M., Thiel, E., & Scheibenbogen, C. (2004). Functional CCR9 expression is associated with small intestinal metastasis. The Journal of Investigative Dermatology, 122, 685-690.
      Leve, F., de Souza, W., & Morgado-Diaz, J. A. (2008). A cross-link between protein kinase A and Rho-family GTPases signaling mediates cell-cell adhesion and actin cytoskeleton organization in epithelial cancer cells. The Journal of Pharmacology and Experimental Therapeutics, 327, 777-788.
      Li, B., Wang, Z., Zhong, Y., Lan, J., Li, X., & Lin, H. (2015). CCR9-CCL25 interaction suppresses apoptosis of lung cancer cells by activating the PI3K/Akt pathway. Medical Oncology, 32, 66.
      Li, K., Xu, B., Xu, G., & Liu, R. (2016). CCR7 regulates Twist to induce the epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma. Tumour Biology, 37, 419-424.
      Li, Q., Ge, Y., Chen, X., Wang, L., Xia, Y., Xu, Z., … Yang, L. (2019). LEM domain containing 1 promotes proliferation via activating the PI3K/Akt signaling pathway in gastric cancer. Journal of Cellular Biochemistry, 120(9), 15190-15201.
      Li, T., & Yang, Z. (2018). Melatonin: Does it have utility in the treatment of haematological neoplasms?British Journal of Pharmacology, 175, 3251-3262.
      Li, Y., Atkinson, K., & Zhang, T. (2017). Combination of chemotherapy and cancer stem cell targeting agents: Preclinical and clinical studies. Cancer Letters, 396, 103-109.
      Liu, H., Zheng, S., Hou, X., Liu, X., Du, K., Lv, X., … Sui, J. (2020). Novel antibodies targeting the N-terminus of FGF19 inhibit hepatocellular carcinoma growth without bile-acid-related side effects. Cancer science, cas.14353.
      Lv, P. C., Jiang, A. Q., Zhang, W. M., & Zhu, H. L. (2018). FAK inhibitors in cancer, a patent review. Expert Opinion on Therapeutic Patents, 28, 139-145.
      Manes, S., Mira, E., Colomer, R., Montero, S., Real, L. M., Gomez-Mouton, C., … Martinez, A. C. (2003). CCR5 expression influences the progression of human breast cancer in a p53-dependent manner. The Journal of Experimental Medicine, 198, 1381-1389.
      Marsal, J., Svensson, M., Ericsson, A., Iranpour, A. H., Carramolino, L., Marquez, G., & Agace, W. W. (2002). Involvement of CCL25 (TECK) in the generation of the murine small-intestinal CD8alpha alpha+CD3+ intraepithelial lymphocyte compartment. European Journal of Immunology, 32, 3488-3497.
      Mirandola, L., Chiriva-Internati, M., Montagna, D., Locatelli, F., Zecca, M., Ranzani, M., … Chiaramonte, R. (2012). Notch1 regulates chemotaxis and proliferation by controlling the CC-chemokine receptors 5 and 9 in T cell acute lymphoblastic leukaemia. The Journal of Pathology, 226, 713-722.
      Mittal, R., Patel, A. P., Debs, L. H., Nguyen, D., Patel, K., Grati, M., … Liu, X. Z. (2016). Intricate functions of matrix metalloproteinases in physiological and pathological conditions. Journal of Cellular Physiology, 231, 2599-2621.
      Moser, B., Wolf, M., Walz, A., & Loetscher, P. (2004). Chemokines: Multiple levels of leukocyte migration control. Trends in Immunology, 25, 75-84.
      Nagarsheth, N., Wicha, M. S., & Zou, W. (2017). Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nature Reviews Immunology, 17, 559-572.
      Nakamoto, N., Ebinuma, H., Kanai, T., Chu, P. S., Ono, Y., Mikami, Y., … Hibi, T. (2012). CCR9+ macrophages are required for acute liver inflammation in mouse models of hepatitis. Gastroenterology, 142, 366-376.
      Olson, B., Li, Y., Lin, Y., Liu, E. T., & Patnaik, A. (2018). Mouse models for cancer immunotherapy research. Cancer Discovery, 8, 1358-1365.
      Park, J., Ostrowitz, M. B., Cohen, M. S., & Al-Kasspooles, M. (2009). A patient with metastatic melanoma of the small bowel. Oncology, 23, 98-102.
      del Peso, L., Gonzalez-Garcia, M., Page, C., Herrera, R., & Nunez, G. (1997). Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science, 278, 687-689.
      Qiuping, Z., Jei, X., Youxin, J., Wei, J., Chun, L., Jin, W., … Jinquan, T. (2004). CC chemokine ligand 25 enhances resistance to apoptosis in CD4+ T cells from patients with T-cell lineage acute and chronic lymphocytic leukemia by means of livin activation. Cancer Research, 64, 7579-7587.
      Qiuping, Z., Qun, L., Chunsong, H., Xiaolian, Z., Baojun, H., Mingzhen, Y., … Jinquan, T. (2003). Selectively increased expression and functions of chemokine receptor CCR9 on CD4+ T cells from patients with T-cell lineage acute lymphocytic leukemia. Cancer Research, 63, 6469-6477.
      Raffetto, J. D., & Khalil, R. A. (2008). Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochemical Pharmacology, 75, 346-359.
      Richmond, A. (2008). CCR9 homes metastatic melanoma cells to the small bowel. Clinical Cancer Research, 14, 621-623.
      Salerno, E. P., Olson, W. C., McSkimming, C., Shea, S., & Slingluff, C. L., Jr. (2014). T cells in the human metastatic melanoma microenvironment express site-specific homing receptors and retention integrins. International Journal of Cancer, 134, 563-574.
      Schulz, O., Hammerschmidt, S. I., Moschovakis, G. L., & Forster, R. (2016). Chemokines and chemokine receptors in lymphoid tissue dynamics. Annual Review of Immunology, 34, 203-242.
      Seidl, H., Richtig, E., Tilz, H., Stefan, M., Schmidbauer, U., Asslaber, M., … Schaider, H. (2007). Profiles of chemokine receptors in melanocytic lesions: De novo expression of CXCR6 in melanoma. Human Pathology, 38, 768-780.
      Sepp, T., Ujvari, B., Ewald, P. W., Thomas, F., & Giraudeau, M. (2019). Urban environment and cancer in wildlife: Available evidence and future research avenues. Proceedings Biological Sciences, 286, 20182434.
      Sharma, P. K., Singh, R., Novakovic, K. R., Eaton, J. W., Grizzle, W. E., & Singh, S. (2010). CCR9 mediates PI3K/AKT-dependent antiapoptotic signals in prostate cancer cells and inhibition of CCR9-CCL25 interaction enhances the cytotoxic effects of etoposide. International Journal of Cancer, 127, 2020-2030.
      Shen, X., Mailey, B., Ellenhorn, J. D., Chu, P. G., Lowy, A. M., & Kim, J. (2009). CC chemokine receptor 9 enhances proliferation in pancreatic intraepithelial neoplasia and pancreatic cancer cells. Journal of Gastrointestinal Surgery, 13, 1955-1962. discussion 1962.
      Siegel, R. L., Miller, K. D., & Jemal, A. (2015). Cancer statistics, 2015. CA: A Cancer Journal for Clinicians, 65, 5-29.
      Singh, R., Stockard, C. R., Grizzle, W. E., Lillard, J. W., Jr., & Singh, S. (2011). Expression and histopathological correlation of CCR9 and CCL25 in ovarian cancer. International Journal of Oncology, 39, 373-381.
      Singh, S., Singh, U. P., Stiles, J. K., Grizzle, W. E., & Lillard, J. W., Jr. (2004). Expression and functional role of CCR9 in prostate cancer cell migration and invasion. Clinical Cancer Research, 10, 8743-8750.
      Stockler, M., Wilcken, N. R., Ghersi, D., & Simes, R. J. (2000). Systematic reviews of chemotherapy and endocrine therapy in metastatic breast cancer. Cancer Treatment Reviews, 26, 151-168.
      Testa, J. R., & Bellacosa, A. (2001). AKT plays a central role in tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 98, 10983-10985.
      Thorpe, L. M., Yuzugullu, H., & Zhao, J. J. (2015). PI3K in cancer: Divergent roles of isoforms, modes of activation and therapeutic targeting. Nature Reviews Cancer, 15, 7-24.
      Tu, Z., Xiao, R., Xiong, J., Tembo, K. M., Deng, X., Xiong, M., … Zhang, Q. (2016). CCR9 in cancer: Oncogenic role and therapeutic targeting. Journal of Hematology & Oncology, 9, 10.
      Velasco-Velazquez, M., & Pestell, R. G. (2013). The CCL5/CCR5 axis promotes metastasis in basal breast cancer. Oncoimmunology, 2, e23660.
      Walz, A., Peveri, P., Aschauer, H., & Baggiolini, M. (1987). Purification and amino acid sequencing of NAF, a novel neutrophil-activating factor produced by monocytes. Biochemical and Biophysical Research Communications, 149, 755-761.
      Wermers, J. D., McNamee, E. N., Wurbel, M. A., Jedlicka, P., & Rivera-Nieves, J. (2011). The chemokine receptor CCR9 is required for the T-cell-mediated regulation of chronic ileitis in mice. Gastroenterology, 140, 1526-1535.e1523.
      Wong, M., & Fish, E. N. (1998). RANTES and MIP-1alpha activate stats in T cells. The Journal of Biological Chemistry, 273, 309-314.
      Wu, G., Ma, Z., Cheng, Y., Hu, W., Deng, C., Jiang, S., … Yang, Y. (2018). Targeting Gas6/TAM in cancer cells and tumor microenvironment. Molecular cancer, 17, 20.
      Wu, V. Y., Walz, D. A., & McCoy, L. E. (1977). Purification and characterization of human and bovine platelet factor 4. Preparative Biochemistry, 7, 479-493.
      Wu, W., Doan, N., Said, J., Karunasiri, D., & Pullarkat, S. T. (2014). Strong expression of chemokine receptor CCR9 in diffuse large B-cell lymphoma and follicular lymphoma strongly correlates with gastrointestinal involvement. Human Pathology, 45, 1451-1458.
      Wyckoff, J. B., Pinner, S. E., Gschmeissner, S., Condeelis, J. S., & Sahai, E. (2006). ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Current Biology, 16, 1515-1523.
      Yang, Y. (2015). Cancer immunotherapy: Harnessing the immune system to battle cancer. The Journal of Clinical Investigation, 125, 3335-3337.
      Ye, L. F., Huang, J., Zhang, L. P., & Chen, Z. (2015). Intracellular expression profile and clinical significance of the CCR9-CCL25 chemokine receptor complex in nasopharyngeal carcinoma. The Journal of Laryngology and Otology, 129, 1013-1019.
      Yokoyama, W., Kohsaka, H., Kaneko, K., Walters, M., Takayasu, A., Fukuda, S., … Nanki, T. (2014). Abrogation of CC chemokine receptor 9 ameliorates collagen-induced arthritis of mice. Arthritis Research & Therapy, 16, 445.
      Yoon, S. O., Park, S. J., Yun, C. H., & Chung, A. S. (2003). Roles of matrix metalloproteinases in tumor metastasis and angiogenesis. Journal of Biochemistry and Molecular Biology, 36, 128-137.
      Youn, B. S., Kim, Y. J., Mantel, C., Yu, K. Y., & Broxmeyer, H. E. (2001). Blocking of c-FLIP(L)-independent cycloheximide-induced apoptosis or Fas-mediated apoptosis by the CC chemokine receptor 9/TECK interaction. Blood, 98, 925-933.
      Zhang, L., Yu, B., Hu, M., Wang, Z., Liu, D., Tong, X., … Zhang, Q. (2011). Role of Rho-ROCK signaling in MOLT4 cells metastasis induced by CCL25. Leukemia Research, 35, 103-109.
      Zhang, Z., Qin, C., Wu, Y., Su, Z., Xian, G., & Hu, B. (2014). CCR9 as a prognostic marker and therapeutic target in hepatocellular carcinoma. Oncology Reports, 31, 1629-1636.
      Zhang, Z., Sun, T., Chen, Y., Gong, S., Sun, X., Zou, F., & Peng, R. (2016). CCL25/CCR9 signal promotes migration and invasion in hepatocellular and breast cancer cell lines. DNA and Cell Biology, 35, 348-357.
      Zhong, Y., Jiang, L., Lin, H., Li, B., Lan, J., Liang, S., … Zheng, W. (2015). Expression of CC chemokine receptor 9 predicts poor prognosis in patients with lung adenocarcinoma. Diagnostic Pathology, 10, 101.
      Zhou, X., Liao, X., Wang, X., Huang, K., Yang, C., Yu, T., … Peng, T. (2019). Clinical significance and prospective molecular mechanism of CC motif chemokine receptors in patients with earlystage pancreatic ductal adenocarcinoma after pancreaticoduodenectomy. Oncology Reports, 42, 1856-1868.
      Zhu, Y., Shen, T., Liu, J., Zheng, J., Zhang, Y., Xu, R., … Gu, L. (2013). Rab35 is required for Wnt5a/Dvl2-induced Rac1 activation and cell migration in MCF-7 breast cancer cells. Cellular Signalling, 25, 1075-1085.
      Zhu, Y., Tian, Y., Du, J., Hu, Z., Yang, L., Liu, J., & Gu, L. (2012). Dvl2-dependent activation of Daam1 and RhoA regulates Wnt5a-induced breast cancer cell migration. PLOS One, 7, e37823.
      Zlotnik, A., & Yoshie, O. (2000). Chemokines: A new classification system and their role in immunity. Immunity, 12, 121-127.
    • Contributed Indexing:
      Keywords: CCL25; CCR9; cancer; chemokines
    • Accession Number:
      0 (CC chemokine receptor 9)
      0 (CCL25 protein, human)
      0 (Chemokines, CC)
      0 (Receptors, CCR)
      0 (Receptors, Chemokine)
    • Publication Date:
      Date Created: 20200514 Date Completed: 20210407 Latest Revision: 20210407
    • Publication Date:
      20240829
    • Accession Number:
      10.1002/jcp.29782
    • Accession Number:
      32401349